

USER MANUAL

Form Plus

Form Designer and Data Input Engine

For WIN32

SUB SYSTEMS, INC.

2005

Form Plus
Version 1.5

2005
Copyright (c) 1997-2005, Sub Systems, Inc.

All Rights Reserved

3017 Convington Place
Round Rock, TX 78681
512-733-252
Software License Agreement

This license agreement allows the purchaser the right to modify the source code to incorporate it into an application. Such a target application may be distributed royalty free with these conditions:

a.
The target application must not be a STAND-ALONE form designer or data input product.

b.
The target application should be 'larger' than the Form Plus routine itself.

c.
The source code of this software must not be distributed in any form.

d.
Form Plus must not be ported to other operating system platforms.

This product is licensed per developer basis only. Each developer working with this package needs to purchase a separate license.

Sub Systems, Inc. reserves the right to prosecute anybody found to be making illegal use of this software.

Sub Systems, Inc. offers a 30 day money back guarantee with the product. The source code diskette envelope must remain sealed. Must call for an RMA number before returning the product.
Disclaimer

Sub Systems, Inc. has made every effort to make this product reliable and error free. However, the manufacturer makes no warranties against any damage, direct or indirect, resulting from the use of the software or the manual and can not be held responsible for the same.

Windows, Visual Basic and Visual C++ are the trademarks of Microsoft Corp.

Delphi is the trademark of Borland International.

TABLE OF CONTENTS

1

General Overview

Getting Started
3

PART I: USER'S MANUAL
5

User Commands
6

File Menu
6

Edit Menu
8

Field Menu
11

Line, Label and Picture Commands
14

Object Arrangement Commands
16

Object Selection
18

Form Executer Commands
19

Field Concepts
20

Field Placement and Field Width
20

Field Value Types
20

Source of Field Data
22

PART II: DEVELOPER’S GUIDE
23

Form Editor Interface
24

Form Executer Interface
29

Application Interface Functions
32

FrsCommand
32

FrsForm
33

FrsGetFieldData
33

FrsGetModified
34

FrsGetParent
34

FrsLoadControl
34

FrsMenuEnable
34

FrsMenuSelect
35

FrsQueryExit
35

FrsRead
35

FrsRepaint
35

FrsSave
36

FrsSetCallback
36

FrsSetFieldData
36

FrsSetFlags
37

FrsSetModified
37

FrsSetMsgCallback
37

FrsShowMessage
37

Major Data Structures
39

Analysis of the Demo Program
43

Form Plus File Format
46

Visual Basic Support
48

VBX/OCX Properties
48

VBX/OCX function calls
49

FvbDrawBitmap
49

FvbEnableFormWindow
50

FvbGetFieldInfo
50

FvbGetPictureInfo
50

FvbSetFieldInfo
51

VBX Events
51

DrawPicture
51

EnterData
51

SelectField
52

VerifyData
52

Unload
53

SaveAs
53

Delphi Interface
54

Visual C++ Interface
56

General Overview

Form Plus consists of two components. The first component is the form editor. The form editor allows you to develop form layouts. The second component is the form executer. The form executer is used to input data using a specified form.

Form Plus provides a comprehensive set of features. The intuitive graphic form editor allows even a novice user to become productive quickly. For the sake of user friendliness, every input parameter offers a default value. The advanced features of Form Plus can be used to generate sophisticated data input forms.

Fields

The form editor supports the following types of fields: text, numeric, float, date, radio button, checkbox, and push button. A long text string field can be word wrapped for printing. The Form Plus fields can come from one of the following sources:

Data Field: A field that is associated with a data record.

System Field:
Page number, current date/time, and common push buttons to add, update, delete, and display data records.

Word Wrapping

The memo fields can be word wrapped. The blank space after the section can be suppressed to support variable length memo fields. The memo fields can consist of multiple paragraphs. The text labels can be placed vertically.

Text Formatting Options

The form editor allows multiple fonts, point sizes and character styles. You can select foreground and background colors for the text. The text can be centered or justified in the horizontal or vertical direction.

Line/Box, and Picture Items

The form editor supports lines at any angle. You can control the color, thickness and style of the line objects. Form allows you to import pictures from the clipboard or bitmap files. The picture can be sized by simply pulling the sizing tabs.

A box item is treated as a special label item with blank label text. You can specify any shade or color for the box. You can specify boundary color and style for the box and embed a box within another box.

Multiple Parts

A long form can be divided into multiple parts. Each part prints on a separate page.

The graphic form editor supports a drag and drop method of placing the form items. Various item arrangement tools can be used to align the items horizontally or vertically. Multiple items can be selected and manipulated. The items can be sized by simply pulling the sizing tabs.

Printing

Form Plus supports printing and print preview.

Interface with Your Application:

Form Editor: Your application calls the form editor with the name of the form to be edited. Your application also supplies a routine that allows the user to select the data fields.

Form Executer: Your application initializes the form executer by calling the initialization routine with the name of the form to run. When the form is displayed on the screen, the user can enter data into the fields, and use various push buttons to interact with your application. Your application has an opportunity to validate the data before saving in the database. Your application is responsible for reading and writing the data to your database.

Requirements

The total memory requirement for all Form Plus modules is approximately 400 K bytes.

Form Plus source code is compatible with Microsoft and Borland 'C' compilers.

License Key
The license key is available in the KEY.TXT file in your distribution. You would set the license key using the FrsSetLicenseKey function. This should be preferably done before creating a FormPlus control to avoid pop-up nag screens.

FrsSetLicenseKey("xxxxx-yyyyy-zzzzz")

Replace the 'xxxxx-yyyyy-zzzzz' by your license key available in the KEY.TXT file.

You do not need to call this function when using FormPlus in an evaluation mode.

Getting Started

	FormPlus can be used in a number of environments.

Please make sure that FRS32.DLL file is installed in a directory available at run-time. When using this product as an ActiveX control, you would also need to copy the FOC.OCX file to the system directory and then register the FOC.OCX files using the regsvr32 Windows program (or using another option available in your programming environment).

When the control is used without using foc.ocx, no MFC components are needed to run the frs32.dll file.

The product License Key must be provided before or after creating a FormPlus control for unrestricted used.

Here are various methods of creating a FormPlus Control window in different programming environments:

	Visual Basic
	You would register the foc.ocx control file and drop the control into your application form. Please refer to the Visual Basic Support topic for detail information on this subject.

	Visual C++ and C
	Please refer to the Form Editor Interface topic for incorporating the form designer into your application. Refer to Form Executor Interface topic for incorporating the form filler into your application.

The package contains the FRS32.LIB file which must be linked to your application. Modify the link statement of your application to include the FRS32.LIB file into the list of libraries.

Your application modules which use FormPlus API functions, should also include the FRS.H and FRS_CMD.H files.

	Delphi
	You would register the foc.ocx control file and drop the control into your application form. Please refer to the Delphi Interface topic for detail information on this subject.

PART I: USER'S MANUAL

User Commands

The form editor commands can be selected by using the menu or by using the speed keys. Each menu item also shows the speed key for the item. To get help on any menu item, highlight the menu item and hit the F1 function key. You can also use the Help menu option to see the index of help topics.

This chapter describes the form editor commands. We will discuss the commands by the order in which they appear in the menu.

File Menu

This submenu contains the following selections:

Save

Use this command to save the changes to the current form file. If a file name has not been assigned yet, this option will allow you to enter the file name.

Save As

Use this command to save a form template to a new file. This option is used to create a copy of the exiting form. The editor will prompt you for the name of the new form file.

Form Parameters

The form parameters are entered using a dialog box. This option allows you to enter a description for the form. In addition, you can specify the following parameters.

Page Margins: You can specify top, bottom, left and right margins in inches. The form editor applies the margin information to the selected printer (see Printer Setup) to calculate the form width. The form width is indicated by the top ruler.

Date Format: This option lets you specify the default date format. Use an 'M' for the MM/DD/YY format or a 'D' for the DD/MM/YY format. This format is applicable to any date information entered by the user during form execution, and any date constants used in field expressions and filters.

Ruler Type: Use this option to show the ruler in inches or centimeters. You can also turnoff the ruler.

Printer Setup

The default printer is automatically assigned to a new form. Use this option to select a different printer from the list of installed printers. This option also allows you to change the printer parameters for the selected printer. The selected printer and the corresponding setup parameters affect the width, height and orientation (portrait or landscape) of the printer output.

Edit Menu

This menu allows you to edit the appearance and placement of the screen objects. Every form object (label, line, field, or picture) is enclosed in an object box. The object box boundary lines are invisible by default. This menu allows you to specify the attributes for the object boundaries, box color, item placement within the box, and text color and fonts. This menu also includes commands to insert or delete the spaces from the form.

Cut, Copy and Paste

These commands allow you to copy an item or a selection of items to the clipboard and paste the items from the clipboard to the current form.

Position Text

Use this option to position the text within the item boundaries. The text can be justified on the left, right, top, or bottom edges, or it can be centered horizontally or vertically. This option is valid for the 'label' and 'field' type items only.

Item Outlines

Use this option to select the item boundaries (left, right, top, bottom) to draw for one or more selected items. You can also specify the color and width of the boundary lines.

This dialog box also allows you to set the multi-line property for a label.

Item Background

Use this option to set the background color or pattern for one or more selected items.

Centering

This option is used to center horizontally one or more selected items. When more than one item is selected, the form editor centers the selection rectangle which contains the individual items.

Delete an Object

Use this option to delete one or more currently selected items.

If the current section is being deleted, the program asks for your confirmation before the deletion. All items within the section are also deleted.

Change Fonts and Text Color

Use this function to change the font and color for the text for one or more selected objects. This option is valid for the field and label type objects only.

When you select this option, the form editor shows the font and color selection dialog box. The current font and colors are preselected in the dialog box. Use this dialog box to specify your selections.

Data Print Only

When this option is set for an item, only the data associated with the item is printed. A label, line, or a static picture item that has this option set is not printed at all. When a field item has this option set, only the field data is printed. The field item outlines, fill color and static text (for button fields) are not drawn. The drawing of the pushbutton field is completely omitted.

You can also select this option for the entire document during run-time. This option is available from the file menu during run-time.

Expand Horizontally

Use this option to create horizontal spaces by moving the items horizontally. For example, consider three items, A, B, and C placed horizontally. If you need to insert a new item between items A and B, you can use this function to create the desired space between these two items and place the new item in the newly created space. To move the items B and C to the right, create a selection rectangle after the item A and select this option. The width of the selection rectangle specifies the movement of the items B and C to the right (note that the selection rectangle does not need to include all items to be moved). All items to the right of the selection rectangle and with the vertical placement between the vertical space spanned by the selection rectangle are moved.

Expand Vertically

Use this option to create additional vertical space by moving the items downward. For example, consider three items, A, B, and C placed vertically. If you need to insert a new item between items A and B, you can use this function to create the desired space between these two items and place the new item in the newly created space. To move the items B and C downward, create a selection rectangle below the item A and select this option. The height of the selection rectangle specifies the downward movement of the items B and C (note that the selection rectangle does not need to include all items to be moved). All items below the selection rectangle are moved.

This option also expands (vertically) the current section by the height of the selection rectangle.

Compress Horizontally

Use this option to delete extra horizontal space by moving the items horizontally. For example, consider three items, A, B, and C placed horizontally. You can use this function to bring items B and C closer to item A. To move items B and C to the left, create a selection rectangle after item A and select this option. The width of the selection rectangle specifies the movement of items B and C to the left (note that the selection rectangle does not need to include all items to be moved). All items to the right of the selection rectangle and with the vertical placement between the vertical space spanned by the selection rectangle are moved.

Compress Vertically

Use this option to delete vertical space by moving the items upward. For example, consider three items, A, B, and C placed vertically. You can use this function to bring items B and C closer to item A. To move items B and C upward, create a selection rectangle below item A and select this option. The height of the selection rectangle specifies the upward movement of items B and C (note that the selection rectangle does not need to include all items to be moved). All items below the selection rectangle are moved.

This option also shrinks (vertically) the current section by the height of the selection rectangle.

Insert Part

This selection inserts a new form part before the current part. The form parts are used to divided the form into smaller parts. Each part prints on a separate page.

Append Part

This selection appends a new part to the form.

Delete Part

This section deletes the current form part.

Field Menu

When you select a 'field' type item, the corresponding field name is displayed on the status line. A field name typically contains a '->' separator. The text to the left of the separator indicates the file name, and the text to the right indicates the field name (within the file).

A field can be enlarged or reduced by simply pulling the sizing tabs. A field, like other screen items, can be moved by dragging and dropping at the desired location.

The field menu contains these options:

Insert New Field

Edit Current Field

Insert New Field

This submenu allows you to insert a field into the form. This option will display a list of fields to choose from. When you select a field, the form editor displays a cursor rectangle. Use the mouse to position the cursor rectangle and click any mouse button. The new field is created where the cursor rectangle is positioned.

The submenu allows you to insert two types of fields (see also Field Concepts):

Data Field: Data fields are associated with the data records. This submenu shows you selections for the data files and data fields.

System Field: The system fields provide system dependent information, such as calendar date, time, page number, record count, push buttons, and the paragraph break field. The calendar date and page number fields are typically printed on the page header. The paragraph break field can be used in a calculation expression to create multiple paragraph text (wrapped text).

Edit Current Field

This selection is used to edit the specification of the currently selected field. This option presents different editing options for different types of fields. Form Plus supports these types of fields:

Numeric

Float

Text

Date

Check box

Radio button

Push button

Numeric and Float Fields: The following edit options are available for a numeric or float field:

Number of Decimal Places: This option determines the number of digits to the right of the decimal point.

Currency Symbol: You may wish to specify a currency symbol ($, Rs, Fr, etc) for fields that represent money.

Prefix and Suffix for Negative Values: This option allows you to decide the appearance of a negative value. For example, if you wish to enclose a negative value in parentheses, specify '(' for the prefix and ')' for the suffix. If you simply wish to show the '-' symbol, enter '-' for the prefix and nothing for the suffix.

Prefix and Suffix for Positive Values: This option allows you to decide the appearance of a positive value. For example, if you wish to enclose a positive value in parentheses, specify '(' for the prefix and ')' for the suffix. If you do not wish to show any symbol for the positive value, enter blanks for the prefix and the suffix.

Suppress Zero Fields: This option suppresses the printing of a field if it contains a zero value.

Pad With Zeros: This option will insert zeros before the field if the field value occupies less spaces than specified by the field width.

Text Fields: The following formatting options are available for a text field:

Capitalize All: This option will capitalize all characters in the field.

Cap First Letter: This option will capitalize the first letter of every word in the field.

Wrap and Word Wrap: These options are used to wrap a text field which is longer than the width allowed by the field on the form. The Wrap option wraps the text that is larger than the field width. Whereas, the Word Wrap option breaks the text at the previous word boundary.

To specify more than one line for a wrapped field, simply pull the bottom sizing tab downward. When you release the mouse button, the form editor will show multiple lines in the field object box. Using this technique, you can increase the size of the wrap field such that it contains the desired number of lines. When a memo field is expected to contain a large number of lines, you can use the 'Variable number of lines' option. This option will compress the space after the last text line.

Date Field: The following edit options are available for a date field:

Date Format: The following date options are available:

Format
Example

MMDDYY
4/30/92

DDMMYY
30/4/92

MMDDYYYY
4/30/1992

MMMDDYYYY
Apr 30, 1992

Delimiter: The MMDDYY, DDMMYY and MMDDYYYY date formats use a delimiter to separate month, day and year. You can specify the value of this delimiter using this option.

A field can also be edited by simply double clicking on the desired field to edit its attributes.

Line, Label and Picture Commands

Create a Line

Use this option to draw a line. When you select this option, the form editor displays a positioning rectangle. Use the mouse to position the rectangle and click any mouse key. The line will be drawn within the position rectangle. The line size can be changed using the sizing tabs.

Edit Current Line

Use this option to edit the angle, color, and thickness of a 'line' type object.

Create a Label

Use this option to create a new label. When you select this option, the form editor displays a positioning rectangle. Use the mouse to position the rectangle and click any mouse key. The 'label' object will be created within the positioning rectangle. By default, the form editor inserts the text 'label' in the label item. The label text can be edited in the editing window.

You can turn-on the multi-line property for a label by selecting this option from the ‘Outline’ selection in the Edit Menu (or by double clicking on a label).

Edit Current Label

A label text can be edited by simply selecting the desired label item and clicking on the edit window.

When you insert or delete the text, the length of the label text changes. Normally, the form editor will automatically adjust the item box boundaries to completely enclose the new text. However, this automatic size adjustment ceases if you manually resized the item boundary by pulling on the sizing tab. This feature can be used to enclose the text in an item box larger than the default size.

Picture From Clipboard

Use this command to copy a picture bitmap from the clipboard.

When you select this option, the form editor creates a positioning rectangle equal to the dimensions of the picture. Use the mouse to position the picture rectangle and click any mouse key. The picture will be placed within the position rectangle. The picture size can be changed using the sizing tabs.

Picture From Disk File

Use this command to read a picture bitmap from a disk file.

When you select this option, the form editor creates a positioning rectangle equal to the dimensions of the picture. Use the mouse to position the picture rectangle and click any mouse key. The picture will be placed within the position rectangle. The picture size can be changed using the sizing tabs.

Object Arrangement Commands

This menu provides commands to help you position the form objects accurately. Select a set of objects to be arranged (see Object Selection Commands) and one of the following functions from the menu.

This menu also contains an undo function to reverse an unintended arrangement command.

Align at Horizontal Top Edge

Use this option to horizontally align the top edge of the selected items to the top edge of the leftmost item in the selection.

Align at Horizontal Bottom Edge

Use this option to horizontally align the bottom edge of the selected items to the bottom edge of the leftmost item in the selection.

Align at Horizontal Center Line

Use this option to align the horizontal center line (imaginary) of the selected items to the center line of the leftmost item in the selection.

Align at Vertical Left Edge

Use this option to vertically align the left edge of the selected items to the left edge of the topmost item in the selection.

Align at Vertical Right Edge

Use this option to vertically align the right edge of the selected items to the right edge of the topmost item in the selection.

Align at Vertical Center Line

Use this option to align the vertical center line (imaginary) of the selected items to the center line of the topmost item in the selection.

Even Spacing Horizontally

Use this option to place the selected items horizontally at an equal distance from each other. The inter-item distance is equal to the distance between the first two leftmost items.

Even Spacing Vertically

Use this option to place the selected items vertically at an equal distance from each other. The inter-item distance is equal to the distance between the first two topmost items.

Set Even Width

Use this option to change the width of the selected items to the width of the topmost item.

Set Even Height

Use this option to change the height of the selected items to the height of the leftmost item.

Undo Previous Arrangement Command

Use this function to undo the previous arrangement command.

Object Selection

Most form editor commands allow you to manipulate one or more selected items. To select a single item, simply click any mouse key on the desired item. The selected item is indicated by the 'dashed' boundary lines.

Multiple items are selected by drawing a selection rectangle. To draw a selection rectangle, place the mouse cursor where you wish to begin the rectangle (mouse cursor must not be placed on an item) and click any mouse button. As the mouse button is depressed, move the cursor such that the rectangle includes the items that you wish to select, and release the mouse button. All items within the selection rectangle or 'touching' the selection rectangle are selected. To include or exclude additional items from the selection, hod the Shift key and click the mouse button on the desired item. The selected items are indicated by the 'dashed' boundary lines. The selection rectangle is indicated by a red color boundary.

You can stretch or compress the selection rectangle by pulling the sizing tabs with the mouse cursor. Thus it is possible to scroll the screen horizontally or vertically and include more items in the selection rectangle.

Form Executer Commands

These commands are available from the menu on the form executer window.

Print

This selection allows you to print a range of form pages to the current printer.

Preview

This selection turns on or off the print preview mode. In the print preview mode, the form is displayed one full page at a time

Field Concepts

A field represents a value to be printed in the form. This chapter discusses the placement of the fields, field value types, sources of fields and subtotals.

Field Placement and Field Width

When a field is inserted using a menu option or the field button, the form editor displays a cursor rectangle. Use the mouse to position the cursor rectangle and click any mouse button. The new field is created where the cursor rectangle is positioned.

The field rectangle contains a text that represents the data type and the current format specification for the field. For a 'text' type field, the field rectangle contains a string of 'x' symbols. The 'x' symbols are capitalized if the capitalization is turned on for the field. The number of 'x' symbols is equal to the data width of the field or the maximum number of symbols that can be accommodated within the current rectangle. For a word-wrapped text field, you can increase the height of the field rectangle to specify multiple text lines containing the 'x' symbols.

For a numeric field, the field text can consist of the symbol '9', a decimal symbol and a set of comma symbols. The currency symbol is also shown when the field rectangle is large enough.

For a 'date' field, the field text describes the format of the date (example: mm/dd/yy, dd/mm/yy, mmm dd, yyyy etc).

When a field is selected, the name of the field appears on the status line. The field width is initially set to the default value. Once a field is inserted in the form, you are free to adjust its location by selecting the item and dragging the mouse. The field width can be changed by simply pulling the sizing tabs. A field can be deleted by simply selecting the field and then pressing the 'del' key.

Field Value Types

A field is used to print a value. Form Plus allows 8 types for field values.

Text Field: The text field holds data that consists of characters and digits. The examples of the text fields would be a name, description or comments. The formatting options that are available for a text field include printing in capital letters, printing in small letters, capitalizing the first letter of each word in the field, and word wrapping. The word wrapping option allows a long text field to be printed in multiple lines.

Technical Note: Within the field structure, a text field has a type of TYPE_TEXT.

Numeric and Float Fields: These fields hold numeric values. The numeric fields hold whole numbers, whereas the Float fields hold floating point numbers. Numeric and Float fields are used to print numeric values such as dollar amount, quantity, measurements, etc. The formatting options that are available with these fields include number of decimal places, currency symbol, prefix and suffix for positive and negative numbers, zero padding or suppression, and comma formatting.

The decimal placement is treated differently for the numeric and float fields. For a float field, the digits on the right of the decimal point is given by the value of the field. However, the form editor allows you to print as many or as few digits to the right of the decimal point as you wish. As a result, the decimal place option simply performs truncation of decimal digits. For example, a float field with a value of 123.45678 can be printed as 123.4567, 123.456, 123.45 or simply 123. The number of decimal digits that are printed in these cases are 4, 3, 2, and 0 respectively.

A non float numeric field, on the other hand, is a whole number. The decimal field placement option in this case simply decides the number of digits to be printed to the right of the decimal point. The remaining digits are printed to the left of the decimal point. For example, a numeric field with a value of 1234567 can be printed as 123.4567 or 1234.567 or 1234567. The number of decimal digits that are printed in these cases are 4,3 and 0 respectively. Many applications prefer a numeric field over a float field for dollar values, as the numeric fields do not suffer form rounding adjustments. However, the maximum value that can be represented using the numeric type may not exceed +-2,147,483,647. You must use the float field to represent a larger value.

Technical Note: Within the field structure, a numeric field is specified using the TYPE_NUM type, whereas a float field is specified using the TYPE_DBL type.

Radio Button: This type is used to select from a list of mutually exclusive items.

Checkbox: This type is used to specify the selection status of an item

Pushbutton: The user clicks on the pushbutton fields to initiate an action, such as add a record, delete a record, etc.

Technical Note: Within the field structure, the radio button, check box, and push buttons fields are specified using the TYPE_RADIO, TYPE_CHECKBOX, TYPE_PUSHBUTTON respectively.

Date Field: This type is used to represent a date field. Various date formats are available including mm/dd/yy and dd/mm/yy.

Technical Note: Within the field structure, a date field is specified using the TYPE_DATE type. During the form execution session, the application provides the data for this field using the NumData (long) field. The long value for this field should be either YYMMDD or YYYYMMDD. If only 2 digits are provided for the year field, the form executer adds 1900 to the year value.

Picture Field: This type of field denotes a picture id.

Technical Note: Within the field structure, a picture field is specified using the TYPE_PICT type. During the form execution session, the application provides the data (picture id) for this field using the NumData (long) field. The form executer actually calls a picture drawing routine in your application to draw the picture . This routine passes the current picture id as an argument.

Source of Field Data

A field may represent a data value or a system value. The pushbutton type fields do not represent any value, instead they are used to initiate an action.

Data Field

A data field is associated with the application file data. Your application provides a list of fields to choose from. Your application can choose to organize the data fields by data files. In the demo program, the customer file provides the data fields. The customer file fields are indicated by the CUSTOMER-> prefix.

Technical Note: When the user wishes to insert a data field into a form, the form editor calls a field selection routine provided by your application. This routine should allow the user to select a data field. The form editor allows your application to organize the fields in any way you wish. Therefore, your application is free to use a data set with any number of files in any relationship. The demo program uses one file to store sample data for a customer file. The demo program inserts the proper file prefix into the field name. The file name prefix must not be one of these reserved names: SYS, CALC and DLG. Your application passes the field name along with certain other information in a field structure (see Form Editor Interfaces).

System Field

The system fields are used to print information such as the calendar date, time, page, and record number. The list of system fields also includes the push button type fields. A system pushbutton is meaningful only if the host application defines an action for it. For example, the ‘Add Key’ system pushbutton can be used to add the currently displayed record to the data file.

PART II: DEVELOPER’S GUIDE

Form Editor Interface

This chapter describes the steps necessary to use the FRS.DLL (FRS32.DLL for 32 bit) for creating a form designer. If you are using the Visual Basic, please refer to the Visual Basic Support chapter.

The form editor allows the user to develop the input forms. The demo program shows an example of interfacing with the form editor. In particular, follow these steps to interface with the form editor:

1.
Include the FRS.H file into your application module which will interface with the form editor.

2.
Create a list of fields used in your data base. The user will select the fields from this list to insert in the form. For each field, you should know its name, default width (number of characters), field type, and number of decimal places (for numeric and float fields).

For example, assume that your application uses a data file that contains up to 15 fields. Define an array to store the field names and field properties:

#define MAX_FIELDS 15

struct StrDataField {

char name[35];
// field name

int width;

// field width

int type;

// field type

int DecPlaces;
// decimal places

int RadioGroup;
// group number for radio button fields

long NumData;
// current numeric data for this field, used only by the form executer.

double DblData;
// current float data for this field

LPSTR pTextData;
// current text data for this field

} DataField[MAX_FIELDS];

width:
The field width stores the default width of the field for data input. The user can modify the field width during the form editing session.

type:
The field types are defined in the FRS.H file. It can be one of the following:

TYPE_TEXT
Text field

TYPE_NUM
Numeric field

TYPE_DBL
Float field

TYPE_DATE
Date field

TYPE_RADIO
Radio button

TYPE_CHECKBOX
Checkbox

TYPE_PUSHBUTTON
Push button

TYPE_PICT
Picture field

Decimal Places: For numeric and float fields, you should also store the number of digits after the decimal point. The user can also change this parameter during the form editing session.

3.
Write a field selection routine. This routine will be called by the form editor whenever the user wishes to insert a data field in the form. The field selection routine has the following prototype:

int
FAR PASCAL UserFieldSelection(HWND hWnd, struct StrField far *field)

The first parameter is the window handle of the Form Editor window. Your application may need to use this parameter to create a dialog box if necessary.

The second parameter is a far pointer to a field variable. This routine should use the field pointer to store the data for the chosen field.

This routine should return a TRUE value (1), if the field selection is successful. Otherwise, it should return a FALSE value.

Typically, a field selection routine should first display a list of files. After a file is selected, this routine should show the list of fields that are available for the file. The user can then choose the desired field.

The routine should return certain minimum information about the chosen field. This information should be written out to the field structure (argument #2). Although, the field structure contains a number of other variables, here we will discuss only those variables that must be assigned by this routine.

field->name
This variable should be set to the name of the field. If your application uses multiple files, the full field name should be provided. The '->' string should be used to separate the file name from the field name. For example, a customer name field in the customer file should be assigned as CUSTOMER->NAME. The file or field name must not contain any of these special characters: ()*/+#<=\"'$, or spaces. Form Plus field names are not case-sensitive.

field->type
The field type must be one of the types described in step #4.

field->width
Initial width of the field.

field->DecPlaces
The number of digits to the right of the decimal point. This data must be specified for a numeric or float field.

field->RadioGroup
This variable is used only for the radio button fields. When using more than one set of radio button fields, this variable is used to group the radio buttons. For example, all radio button fields to select the customer credit (high,low,medium) can be assigned the RadioGroup of 0, and all radio button fields to select the payment term (30day, 60 day) can be assigned the radio group of 1.

field->ParaChar
Needed only for a word-wrapped field with multiple paragraphs. Specify the new paragraph indicator character in the first byte. When the form executer sees this character in the text stream, it will place the subsequent text in the next paragraph. We recommend ASCII 13 value for this field.

Although not mandatory, it is advantageous to provide the following variable also:

field->FieldId
An id associated with the field. These variables can be later used by your application during data input to identify the fields easily.

Your application can also set the field flags. For example, you can set the FLAG_CUSTOM_DATA as following:

field->flags=field->flags | FLAG_CUSTOM_DATA.

When this flag is set for a field, your application is responsible for prompting the user for data for the field. Your application defines the EnterData callback to provide the data entry function. Please refer to Form Executer Interface chapter for more information.

In the example used by step #4, all the above information can be provided very easily from the DataField structure.

4.
Define a structure variable of structure type StrForm (defined in the FRS.H file). This structure is used to pass the initial form parameters to the form function. Example:

struct StrForm FormParm;

The StrForm structure is defined as following:

struct StrForm {

BOOL InDesignMode;

int x;

int y

int width;

int height;

int (FAR PASCAL *UserSelection)(HWND, struct StrField far*);

BOOL (FAR PASCAL *VerifyData)(HWND, struct StrField far *);

int (FAR PASCAL *DrawPicture)(HWND, HDC hDC, int PictId, int FieldId, LPRECT rect);

BOOL (FAR PASCAL *EnterData)(HWND, struct StrField far *, int x, int y, int width, int height);

char file[129];

char DataSetName[20];

BOOL ShowMenu;

BOOL ShowHorBar;

BOOL ShowVerBar;

BOOL ShowToolbar;

HANDLE hInst;

HANDLE hPrevInst;

HANDLE hParentWnd;

HANDLE hFrWnd;

DWORD style;

char FontTypeFace[31];

BOOL open;

BOOL modified;

}

6.
Fill the StrForm structure variables as following:

InDesignMode: Set this parameter to TRUE to invoke to the form designer.

x:
Specify the initial X position (in device units) of the form editor window. You may specify CW_USEDEFAULT to use the default value.

y:
Specify the initial Y position (in device units) of the form editor window.

width:
Specify the initial width (in device units) of the window in device units. You may specify CW_USEDEFAULT to use the default value.

height:
Specify the initial height (in device units) of the editing window

UserSelection: Specify the pointer to the data field selection routine developed in step #3. Example:

FormParm.UserSelection = (void far *) MakePFOCInstance(UserFieldSelection,hInst);

This variable is used only in the design mode.

(This process instance should not be freed until the form editor window is closed)

VerifyData:
This variable is not used in the design mode.

DrawPicture:
This variable is not used in the design mode.

EnterData:
This variable is not used in the design mode.

file:
Specify the name of the form template file. The full path name is allowed in the file name.

DataSetName:
This field is used only when creating a new form. Using this field, you can specify a name for the data set needed for this form. The data set name for the form is stored in the disk file. Note, that this field is not needed for form editing and is never used internally by Form Plus.

ShowMenu:
Set to TRUE if you wish to use the form editor menu.

ShowHorBar:
Set to TRUE to show the horizontal scroll bar.

ShowVerBar:
Set to TRUE to show the vertical scroll bar.

ShowToolbar:
Set to TRUE to display the toolbar to create labels and fields.

hInst:
Specify the instance handle of your application.

hPrevInst:
Specify the instance handle of any previous invocation of your program, or specify NULL.

hParentWnd:
Specify your window's handle, or set to NULL. The form editor sends the FRS_CLOSE message to this window before closing itself. Your application can then perform any necessary housekeeping tasks.

hFrWnd:
Set this field to 0. The form editor will place into this field the handle of the form editor window when it is created.

style:
Use this field to specify the style word for the form editor window.

FontTypeFace:
Specify the typeface for the default font. Set this field to NULL if you wish the form editor to use the preset default typeface.

open:
Set this field to FALSE. The form editor will set this field to a TRUE value after opening the form editor window.

modified:
This flag is used internally and it should be set to FALSE.

7.
Update the export section of your application's .DEF file to include the UserSelection function. This exported function will be called by the Form Plus DLL to accept the data fields.

8. Call the form editor routine as following:

FrsForm(&FormParm);

This function displays the selected form in an editor window and allows the user to edit the form. The function returns the form designer window handle on a successful execution. Otherwise it returns a NULL.

10.
Edit the link statement in your make file to include the FRS.LIB (FRS32.LIB for WIN32 applications) import library file.

Please also refer to the Analysis of the Demo Program chapter for further help with the form editor interface.

Form Executer Interface

Your application uses the form executer to allow the user to input data into a form. Your application is responsible for storing the user entered data into your data base. The user interacts with your application using system buttons such as ‘Add Key’, “View Record’, ‘Update Record’, ‘Delete Record’, etc. When the user presses any system button (or any button defined by your application), your application receives the control via the ‘VerifyData’ callback function. At this time, your application takes appropriate action to store, delete, or update the data record.

Follow these steps to interface with the form executer:

1.
Include the FRS.H file into your application module which will interface with the form executer.

2.
Write a callback function called VerifyData as following:

BOOL FAR PASCAL VerifyData(HWND hWnd,struct StrField far *field)

When this function is called, the form designer specifies the window handle and current field data. This function serves these two purposes:

a)
When the user enters data into an input field, your application has a chance to verify the data as soon as it is entered. Your application return TRUE if the data is valid, otherwise it returns FALSE. Depending upon the requirement of your application, you may or may not want to verify the field as soon as the data is entered into it. You can, instead, choose to verify the data for the entire record when a system pushbutton is pressed to add or update the record.

b)
When the user presses a system pushbutton, your application is informed of the user action. For example, when the user clicks on the ‘update’ system pushbutton to update the current record.

if (field->source==SRC_SYS) { // handle the system pushbutton events

// Locate and show the next customer

if (field->SysIdx==SYS_FIND_NEXT) {

..

..

}

else if (field->SysIdx==SYS_ADD_KEY) {

..

..

}

else if (.. // handle other system keys

}

}

else {

// verify data fields if necessary

..

..

..

}

3.
Skip this step if your application does not use custom data fields otherwise write a callback function to facilitate custom data entry. This routine will be called by the form executer when the user clicks on a field which is flagged as FLAG_CUSTOM_DATA.

BOOL FAR PASCAL _export EnterData(HWND hWnd,struct StrField far *field, int x, int y, int width, int height)

The ‘hWnd’ parameter is the window handle of the form executer window. The ‘field’ parameter identifies the field for which the user needs to enter data. The x, y, width, and height parameters identify the location and dimension of the field in the form executer window. This information can be used by your application to position any user entry screen accordingly.

The user entered data is returned to the form executer in the following member variable of the field structure:

NumData: Data for the field types: numeric, date, radio button, checkbox and picture id.

DblData: Data for the floating numeric field

CharData: Pointer to the text type data

This function should return TRUE if the users enters the data, otherwise it should return a FALSE value.

4.
Skip this step if your application does not use the picture type fields. Otherwise write a picture drawing routine. This routine will be called by the form executer whenever it needs your application to draw a picture for a picture id. The picture drawing routine has the following prototype:

int
FAR PASCAL DrawPicture(HWND hWnd, HDC hDC, int PictId, int FieldId, RECT far *rect)

The hWnd parameter specifies the form executer window handle.

The hDC parameter specifies the device context of the form output device. This device context either belongs to a printer or to a screen metafile. The device context is in the ANISOTROPIC mode with the x and y resolutions set to UNITS_PER_INCH constant (defined in the FRS.H file).

The PictId parameter specifies the id of the picture to be drawn. The parameter has a numeric value contained in this field.

The FieldId parameter specifies the id of the field name.

The rect parameter specifies the rectangle within which your application should draw the picture.

5.
Define a structure variable using the StrForm structure as described in the previous chapter. In the form execution mode, this structure is filled a little differently. We will described the differences here.

The ‘InDesignMode’ member variable should be set to FALSE.

The ‘UserSelection’ member should be set to NULL.

The ‘VerifyData’ member variable should be set to an instance of the callback function described in step #2.

The ‘DrawPicture’ member variable should be set to an instance of the callback function described in step #4. If dynamic pictures are not used in your application, set this variable to NULL.

The ‘EnterData’ member variable should be set to an instance of the callback function described in step #3. If custom fields are not used in your application, set this variable to NULL.

6.
Call the form executer routine as following:

FrsForm(&FormParm);

This function displays the selected form in a window and allows the user to enter data into it. The function returns the form executer window handle on a successful execution. Otherwise it returns a NULL.

Please also refer to Analysis of the Demo Program chapter for further help with the Form Plus interface.

Application Interface Functions

FrsCommand

Execute a FormPlus command.

BOOL FrsCommand(hWnd, CmdId)

HWND hWnd;
// Window handle to access.

int CmdId;
// Command id to execute.

Description: This function can be used to execute one of the following commands.

ID_ALIGN_HORZ_BOT
Position the selected items such that the bottom of items are aligned horizontally.

ID_ALIGN_HORZ_CENTER
Position the selected items such that the center of the items are aligned horizontally.

ID_ALIGN_HORZ_TOP
Position the selected items such that the top of the items are aligned horizontally.

ID_ALIGN_VERT_CENTER
Position the selected items such that the center of the items are aligned vertically.

ID_ALIGN_VERT_LEFT
Position the selected items such that the left edge of the items are aligned vertically.

ID_ALIGN_VERT_RIGHT
Position the selected items such that the right edge of the items are aligned vertically.

ID_APPEND_PART
Append a new form part.

ID_CENTER_ITEM
Center an item

ID_COMPRESS_HORZ
Compress the form space horizontally.

ID_COMPRESS_VERT
Compress the form space vertically.

ID_COPY
Copy to clipboard.

ID_CUT
Copy to clipboard and delete the current selection.

ID_DATA_PRINT
Print only the data values for the entire document(runtime only)

ID_DEL_ITEM
Delete the current item.

ID_DEL_PART
Delete the current form part.

ID_DOWN
Position one line down.

ID_EDIT_FLD
Edit the current field.

ID_EDIT_LABEL
Edit a label.

ID_EDIT_LINE
Edit the line object properties.

ID_EVEN_SIZE_HORZ
Set identical width for the selected items.

ID_EVEN_SIZE_VERT
Set identical height for the selected items.

ID_EVEN_SPACE_HORZ
Set identical horizontal spacing between items.

ID_EVEN_SPACE_VERT
Set identical vertical spacing between items.

ID_EXIT
Exit the program.

ID_EXPAND_HORZ
Expand the form space horizontally.

ID_EXPAND_VERT
Expand the form space vertically.

ID_FONTS
Invoke font selection.

ID_FORM_PARAM
Accept form parameter.

ID_HELP
Invoke the help screen.

ID_INSERT_DATA
Insert a data field.

ID_INSERT_LABEL
Insert a label.

ID_INSERT_LINE
Insert a line object.

ID_INSERT_PART
Insert a new form part.

ID_INSERT_SYS
Insert a system field.

ID_ITEM_BACKGROUND
Edit item background.

ID_ITEM_DATA_PRINT
Print only the data value for the current item.

ID_ITEM_OUTLINE
Edit item outlines.

ID_LEFT
Position left.

ID_PASTE
Paste items from the clipboard.

ID_PGDN
Position page down.

ID_PGUP
Position page up.

ID_PICT_FROM_CB
Paste a picture from clipboard.

ID_PICT_FROM_FILE
Paste a picture from file.

ID_POS_ITEM
Position an item.

ID_PREVIEW
Invoke print preview.

ID_PRINT
Print the form.

ID_PRINT_OPTIONS
Invoke printer setup.

ID_QUIT
Exit the program.

ID_RIGHT
Position right.

ID_SAVE
Save the current file.

ID_SAVEAS
Save the current file with different name.

ID_SEC_EDIT
Edit the current form part.

ID_SEC_NEW
Insert a new form part.

ID_SNAP_TO_GRID
Enable/disable snapping of items to the grid when the items are moved.

ID_UNDO
Undo the previous arrangement command.

ID_UP
Position one line up.

Example:

FrsCommand(hWnd,ID_PRINT) // print the form

Return Value: This function returns TRUE when successful.

FrsForm

Open a form window.

HWND FrsForm(FormParam)

struct StrForm far *FormParam;
// Form parameter structure. Please refer to the Form Editor Interface chapter for the description of the member variables for this structure.

Return Value: This function returns the window handle of the new form window when successful. Otherwise it returns NULL.

FrsGetFieldData

Get the user data for a field.

BOOL FrsGetFieldData(hWnd, FieldName, FieldId, NumData, DblData, TextData)

HWND hWnd;
// Window handle to access.

LPSTR FieldName;
// Field name to get the data for. Set this parameter to “” or NULL if the FieldId is to be used to indicate the field to retrieve.

int FieldId;
// Field id to get the data for. This value is not used when the FieldName parameter is used to retrieve the data.

long far *NumData;
// Pointer to receive the numeric data. The function returns data in this variable for all field types other than ‘double’ and ‘text’ type fields.

double far *DblData;
// Pointer to receive the data for the ‘double’ type field.

LPSTR TextData;
// Pointer to receive the data for the text type field. The string pointed to by this location should be at least as large as the width of the text field.

Description: This function is used to extract the data entered by the user into a form field. The data is returned in the NumData, DblData or TextData variables depending upon the type of the field.

Return Value: This function returns TRUE when successful.

See Also: FrsSetFieldData

FrsGetModified

Retrieve the ‘modified’ status of the form or data.

BOOL FrsGetModified(hWnd)

HWND hWnd;
// Window handle to access.

Description: This function returns TRUE if the form items or the data fields are modified and the modifications are not yet saved.

Return Value: This function returns the current ‘modified’ status.

See Also: FrsSetModified

FrsGetParent

Return the window handle of the parent window.

HWND FrsGetParent(hWnd)

HWND hWnd;
// Window handle to access.

Return Value: This function returns the window handle of the parent window of the form control.

FrsGetSeletedField

Retrieve the selected field information.

BOOL FrsSetSelectedField(hWnd, pField)

HWND hWnd;
// Window handle to access.

Struct StrField far *pField;
// The field structure to be receive the selected field information.

Description: This function can be used at the design time to retrieve the field structure for the selected field.

Return Value: This function returns TRUE when successful.

See Also: FrsSetSelectedField

FrsLoadControl

Load FormPlus control.

BOOL FrsLoadControl()

Description: Normally FormPlus library is automatically loaded if your application uses at least one FormPlus API function. If you do not need to use any FormPlus API functions, call this function anywhere in your program to ensure that FormPlus library is loaded.

Return Value: This function always returns TRUE.

FrsMenuEnable

Return the ‘enable’ status for a menu item.

BOOL FrsMenuEnable(hWnd, CmdId)

HWND hWnd;
// Window handle to access.

int CmdId;
// Command id of the menu item. For a list of command ids, please refer to the FrsCommand function.

Description: This function is useful for building your own menu structure for the FormPlus control. For a given menu item, this function returns FALSE if the menu item should be grayed.

FrsMenuSelect

Return the ‘check’ status for a menu item.

BOOL FrsMenuSelect(hWnd, CmdId)

HWND hWnd;
// Window handle to access.

int CmdId;
// Command id of the menu item. For a list of command ids, please refer to the FrsCommand function.

Description: This function is useful for building your own menu structure for the FormPlus control. For a given menu item, this function returns TRUE if the menu item should be checked.

FrsQueryExit

Query the user to exit the program.

BOOL FrsQueryExit(hWnd, CmdId)

HWND hWnd;
// Window handle to access.

Description: This function can be used to query the user to exit the program. If the data needs to be saved, this function prompts the user to save the data. The user has the option to save the data, loose the data or deny the exit request.

Return Value: This function returns TRUE if the form can be unloaded.

FrsRead

Load a form file into the control.

BOOL FrsRead(hWnd, FileName)

HWND hWnd;
// Window handle to access.

LPSTR FileName;
// name of the form file to load.

Description: Before the new file is loaded, any existing form file is discarded.

Return Value: This function returns TRUE when successful.

FrsRepaint

Repaint the form window.

BOOL FrsRepaint(hWnd, scope)

HWND hWnd;
// Window handle to access.

int scope;
// The painting scope can be set to one of the constants:

PAINT_WIN: Repaint the entire window.

PAINT_ITEMS: Repaint only the data items.

Return Value: This function returns TRUE when successful.

FrsSave

Save the current form data.

BOOL FrsSave(hWnd, FileName)

HWND hWnd;
// Window handle to access.

LPSTR FileName;
// name of the form file to save the form data.

Return Value: This function returns TRUE when successful.

FrsSetCallback

Set a callback function.

BOOL FrsSetCallback(hWnd, type, proc)

HWND hWnd;
// Window handle to access.

int type;
// Type of the callback function to set:

CB_USER_SELECTION: User field selection function

CB_DRAW_PICTURE: Custom picture drawing function.

CB_VERIFY_DATA: Data verification function.

CB_ENTER_DATA: Custom data entry function.

LPVOID proc;
// Instance handle (pointer) of the callback function.

Description: This function allows you set the callback function for one of the supported types (second argument). You do not need to use this function when you create the form window using the FrsForm function, since that function allows you to specify the callback functions in the parameter structure. This function is also not needed when the control is created using the VBX or the OCX, since the callbacks are handled automatically by the events.

Return Value: This function returns TRUE when successful.

FrsSetField

Retreive or modify the field structure.

BOOL FrsSetField(hWnd, FieldName, FieldId, pField, set)

HWND hWnd;
// Window handle to access.

LPSTR FieldName;
// Field name to get the data for. Set this parameter to “” or NULL if the FieldId is to be used to indicate the field to set.

int FieldId;
// Field id to get the data for. Set this parameter to 0 when FieldName is to be used to indicated the field to set.

Struct StrField far *pField;
// The location of the field structure

BOOL set;
// Set to TRUE to update the field structure, or set to FALSE to retrieve the field structure.

Description: This function can be used to modify the field structure for a field.

Return Value: This function returns TRUE when successful.

FrsSetFieldData

Set the data for a field.

BOOL FrsSetFieldData(hWnd, FieldName, FieldId, NumData, DblData, TextData,repaint)

HWND hWnd;
// Window handle to access.

LPSTR FieldName;
// Field name to get the data for. Set this parameter to “” or NULL if the FieldId is to be used to indicate the field to set.

int FieldId;
// Field id to get the data for. Set this parameter to 0 when FieldName is to be used to indicated the field to set.

long NumData;
// Numeric data for all field types other than ‘double’ and ‘text’ types.

double DblData;
// Data for the ‘double’ type field.

LPSTR TextData;
// Text data for the ‘text’ type field.

BOOL repaint;
// TRUE to repaint the screen after this operation.

Description: This function is used to set the data into a form field. The data is provided in the NumData, DblData or TextData variables depending upon the type of the field.

Return Value: This function returns TRUE when successful.

See Also: FrsGetFieldData

FrsSetFlags

Set a global form flag.

DWORD FrsSetFlags(hWnd, set, flags)

HWND hWnd;
// Window handle to access.

BOOL set;
// TRUE to set the flags, FALSE to reset them.

DWORD flags;
// The flags to set or reset. No flag ids are yet defined.

Return Value: This function returns the new flag value.

FrsSetModified

Override the ‘modified’ status of the form or data.

BOOL FrsSetModified(hWnd, modified)

HWND hWnd;
// Window handle to access.

BOOL modified;
// The new ‘modified’ status.

Return Value: This function returns the previous status of the modification flag.

See Also: FrsGetModified

FrsSetMsgCallback

Set a callback function to receive the form messages.

BOOL FrsSetMsgCallback(hWnd, proc)

HWND hWnd;
// Window handle to access.

MSG_CALLBACK proc;
// The process instance to receive the form messages.

Description: If your application parent window is not capable of receiving the form messages, you can set a callback function to receive the form messages. This function is not required when using the VBX/OCX interface, since the messages are handled via events in these environments.

Return Value: This function returns TRUE when successful.

FrsSetSeletedField

Update the selected field.

BOOL FrsSetSelectedField(hWnd, pField)

HWND hWnd;
// Window handle to access.

Struct StrField far *pField;
// The field structure to be applied to the currently selected field.

Description: This function can be used at the design time to modify the field structure for the selected field.

Return Value: This function returns TRUE when successful.

See Also: FrsGetSelectedField

FrsShowMessage

Display a message during form execution.

BOOL FrsShowMessage(hWnd, msg)

HWND hWnd;
// Window handle to access.

LPSTR msg;
// Message string to be displayed.

Description: This function is used to display a message to the user during form execution. Typically, you would use this function to inform the user of an invalid field data.

Return Value: This function returns TRUE when successful.

Major Data Structures

This chapter describes the major data structures used by Form Plus.

StrForm

This structure is used to define the parameter list to call the form editor. This structure is defined in the FRS.H file. The calling program must define a variable using this structure. The parameters must be passed using the pointer to this variable. Please refer to the Form Editor Interface and Form Executer Interface chapters for a complete description of the structure members.

StrFormHdr

This structure describes the form file header. This structure is defined in the FRS.H file. Your application can use this structure to read the form name from the form header. Your application can then display the available forms to the user to select. Member variables:

FormSign:
(unsigned) A valid form file will have a 2 byte (4 bytes for Win32) code in the beginning of the file. The value of this code should be 0xDFBC (0xDFBA for Win32).

name:
(char [52]) Name of the form. The form name may not exceed 50 characters.

DataSetName:
(char [20]) Data set to be used to produce the form. This value is of no internal significance to Form Plus

ItemCount:
(int) Total number of screen items in the form.

FieldCount:
(int) Total number of fields used in the form.

FontCount:
(int) Total number of entries in the font table.

SectionCount:
(int) Number of form parts used.

LeftMargin:
(float) Left margin (inches).

RightMargin:
(float) Right margin (inches)

TopMargin:
(float) Top margin (inches)

BottomMargin:
(float) Bottom margin (inches)

PrinterName:
(char [52]) Name of the printer for which the current form is designed.

PrinterDriver:
(char [52]) Driver name of the current printer.

flags:
(unsigned) RFLAG_ constants.

DateFormat: (int) Specifies the default date format. A 0 value for this field specifies MM/DD/YY format, where as a 1 value specifies the DD/MM/YY format.

RulerType: (int)
Specifies the ruler type used by the form: RULER_INCH (inches), RULER_CM (centimeters), or RULER_OFF (ruler not used).

SecBannerHeight: (int)
Height of the section banner in 1/10 of millimeters.

FileFormatId:
(int) Template file format id.

reserved:
(char [144]) reserved for future use.

StrField

The StrField structure is used to define individual fields used in a form. The form editor defines an array of fields using this structure. This structure is defined in the FRS.H file. Member variables:

source:
(int) This variable defines the source of the field. It can be set to one of the following values:

SRC_APPL:
Derived from your application. This type of field will contain application data during the form execution.

SRC_SYS:
System field used for defining calendar date, time, record count, and paragraph break field, etc.

SRC_CONST:
Defines the constants used in an expression.

SRC_NONE:
Indicates a deleted field.

name:
(char [52]) This field contains the field name. If the file name is a part of the field name, it is separated from the field name using a '->' separator, i.e. CUSTOMER->ADDRESS. A field name may not exceed 50 characters.

FieldId:
(int) This value is supplied by your application in the field selection routine. Your application can use this value during the form execution session to determine a field.

type:
(int) This variable specifies the field data type. The field data types are defined in the FRS.H file:

TYPE_NUM
Numeric field. Stored as a long variable.

TYPE_DBL
Float type numeric field. Stored as a double variable.

TYPE_TEXT
Text field. Stored using a character pointer.

TYPE_RADIO:
Radio button field.

TYPE_CHECKBOX:
Checkbox field.

TYPE_PUSHBUTTON:
Pushbutton field.

TYPE_DATE:
Date Field. Stored as a long variable in either YYMMDD format or YYYYMMDD format.

TYPE_PICT:
Picture id field. Stored as a long variable. During the form execution time, your application routine (DrawPicture) is called to draw this type of data.

width:
(int) default width of the field. The number of data characters in the text field may not exceed the value specified by this variable.

DecPlaces:
(int) Specifies the number of digits to the right of the decimal point for the numeric and double fields.

AllowChanges:
(int) This field can be set to a FALSE value by your application to protect the field from any changes by the user.

InUse:
(int) This variable is set to a FALSE value when a field is deleted or if it is not being used.

flags:
(unsigned) The following flag bits can be set for a field (defined in the FRS.H file):

FLAG_SUP_ZERO:
Do not print a numeric or float field with a zero value.

FLAG_PAD_ZERO:
Insert zeroes in front of a numeric or float field to yield the required field width.

FLAG_CAPS:
Capitalize the text field.

FLAG_FIRST_CAP:
Capitalize the first character of each word in a text field.

FLAG_SMALL:
Convert the text field to the lower case letters.

FLAG_COMMA:
Specifies a comma format for a numeric or float field.

FLAG_WRAP:
Specifies that the text field will be wrapped if it is longer than the display width. An overflow field must be defined underneath the text field.

FLAG_WORD_WRAP:
Specifies that the text field will be word wrapped if it is longer than the display width. An overflow field must be defined underneath the text field.

FLAG_CUSTOM_DATA:
Indicates that your application is responsible for entering data into this field.

SysIdx:
(int) For a system field, this variable specifies the index into the system field table.

DateFormat:
(int) The date format (for output) can be one of the following:

DT_MMDDYY:
Example: 4/30/92

DT_DDMMYY:
Example: 30/4/92

DT_MMDDYYYY:
Example: 4/30/1992

DT_MMMDDYYYY:
Example: Apr 30, 1992

DateDelim:
(char [2]) This variable specifies two separators that are used in a date format. The default is '/'.

ParaChar:
(char [2]) For a word-wrapped text field with multiple paragraphs, use this variable to specify the new paragraph indicator in the first byte. The form executer examines the text data to search for the new paragraph indicator character. The text following the new paragraph indicator character is placed on the next paragraph. The second byte for this variable should be set to NULL.

CurrencySymbol:
(char [4]) Allows you to specify the currency symbol ($, Rs, Fr. etc) for a numeric and float fields.

NegSignPrefix:
(char [4]) The prefix to be printed for a negative value (example '-').

NegSignSuffix:
(char [4]) The suffix to be printed for a negative value (example 'CR').

PosSignPrefix:
(char [4]) The prefix to be printed for a positive value (example + or nothing).

PosSignPrefix:
(char [4]) The suffix to be printed for a positive value (example 'DR' or anything else).

CharData:
(LPSTR) This field is used by your application to supply text data. The form executer provides a valid character pointer in this variable for the text (TYPE_TEXT) fields. Your application copies the text data to the location pointed by the variable. The text data must be NULL terminated and should not be longer than the width specified by the 'width' variable.

NumData:
(long) This field is used by your application to provide numeric, logical, date, and picture id (TYPE_NUM, TYPE_LOGICAL, TYPE_DATE, TYPE_PICT) data.

DblData:
(double) This field is used by your application to provide float type data.

RadioGroup:
(long) This field stores the group number for the radio button fields. The group number are used to group radio buttons.

SectId:
(int) This variable stores the section location of the field.

misc:
(int) Used for temporary calculations.

UseCount:
(int) The use-count for the shared fields.

reserved:
(char [8]) for future use.

Analysis of the Demo Program

This chapter describes the demo program. The demo program provides an example of interfacing with Form Plus. You may like to begin with the demo program code to create your own interface.

Data File

The demo program uses one data file to store the customer data. The customer file contains the client data such as customer id, name and address. The data file has an extension of .DB (CUSTOMER.DB). The data is stored in the file in the text format. The fields are separated by the comma character. The text fields are enclosed within quotation marks. You can type the CUSTOMER.DB file at the DOS prompt to display the contents of the file.

The customer file also has a data definition file which has an extension of .DF (CUSTOMER.DF). Each line of the data definition file contains the information about one field of the file. The line contains the field name, maximum width of the field, field type, and number of decimal digits for the numeric and float fields. The field type can be text (T), numeric (N), float (F), date (D), checkbox (C) and Radio button (Rn). The number prefix for the radio button type specifies the radio button group id. The ReadFields function in the demo program reads the field definition files and stores the data about individual fields in a structure array called FieldDef.

Include Files

The demo program includes the FRS.H file. This file must be included into your application module which will interface with Form Plus.

Definition File

The demo.def file contains the export functions for its dialog boxes and four additional functions used for field selection, data verifications, picture drawing, and custom data entry. Each export function in the export section must have a unique ordinal number. see the DEMO.DEF file for an example.

Global Constants

MAX_FORMS
Number of forms that can be displayed by the demo program menu.

MAX_FIELDS
Number of fields in the data file.

ITEM_WIDTH
Display width of the menu items.

Global Variables:

struct StrForm FormParm; This structure is used to call the FrsForm function. For the definition of the StrForm structure, refer to the FRS.H file.

char FormName[MAX_FORMS+2][NAME_WIDTH+2]; This array stores the form names for the form files found in the current directory. The form name is read from a header structure within a form file.

char FormFile[MAX_FORMS+2][13]; This array stores the names of the form files found in the current directory. The form files have a .FI extension.

struct StrFieldDef FieldDef[MAX_FIELDS]; This structure stores the field definition for the data file. The field definition is read from the CUSTOMER.DF file.

Program Flow

The following pseudo code gives an overview of the demo program flow.

InitInstance() {

Create Demo Window.

Initialize Form Editor calling parameters.

Read the field information for the data file.

}

ReadFields() { // read fields from a definition file

Open the definition file.

Read lines from the file. Each line describes one field of the file.

For each line, use ExtractField() to extract field attributes {

Extract the field name. Store it in the DataField array.

Extract the field maximum width. Store it in the DataField array.

Extract the field type. T=Text, N=Numeric, F=Float, D=Date, R=Radio button, C=Checkbox. The field attributes are stored in the DataField array using the TYPE_ constants (FRS.H)

Extract the number of decimal digits for the numeric and float fields.

}

Close the definition file.

}

ExtractField() {

Extract the next field attribute from a text line. After extracting the current field attribute, this routine advances the index in the text line, so that the next call can extract the next attribute.

}

CallEditor() {

GetFormSelection()
// get a form name to edit

Set the typeface to NULL (use default).

Set the point size to 0 (use default).

Call the form editor function:

form(&FormParam)

}

GetFormSelection() {

Get the form files, add them to the selection list.

When called from the EditForm function, add an additional selection to allow the creation of new form.

Show the selection in the list box and let the user select one form.

}

GetFormFiles() {

Read from the current directory the files with the .FI extension.

Open each file to read the form header.

Extract the form name from the form header.

Return the form name.

}

UserFieldSelection() {

This routine is called by the form editor when the user wishes to insert a data field in the form. The form editor passes the pointer to the field structure (second argument). This routine will pass the information about the selected field using the field pointer.

Show the fields for the selected file, and let the user select one field.

Fill in these values in the field structure:

field->name

field->width

field->type

field->DecPlaces.

The above values are copied from the FieldDef structure which was created by the ReadFields function during initialization.

Additional values (optional):

field->FieldId

This information is used to easily identify the field to fill in data during the form execution session.

}

VerifyData {

This routine is called by the form executer when the user enters a data into a field. This function is also called when the user clicks on a push button type field. The form executer passes the pointer to the field structure using the second parameter.

Check the field type.

If the field type is SRC_SYS (system field):

Check the SysIdx for the system push button field id.

Respond according to the push button field id.

If the field type is SRC_APPL (data field).

Validate the data field as necessary.

}

Form Plus File Format

The Form file consists of 7 sections in the following sequence:

Form Header Block

Screen Object Block

Field Block

Section Block

Font Table

Form Header Block: The file begins with a header block. The contents of the header block is defined by the StrFormHdr structure. The size of the header block is equal to the sizeof(struct StrFormHdr). The header is stored as a packed structure. In other words, there is no gap between adjacent header variables.

The ItemCount field in the header defines the total number of screen items in the screen object block. The TotalFields element defines the size of the Field Block. The FontCount defines the number of fonts used by the font.

Screen Object Block: This block contains the screen objects used in the form. The total number of screen items is defined by the TotalItems variable in the header structure.

Each screen object contains a 'font' field, which is an index into the StrFont array (last block in the file). The 'field' type screen object also includes a 'field' variable, which is an index into the field table (see Field Block). Each screen object also contains a 'section' variable which is an index into the section table (see Section Block).

Field Block: This block contains the field table. The number of entries in the field table is defined by the FieldCount variable in the header structure. The size of the individual field table element is equal to the sizeof(struct StrField). The data is stored in the packed structure. In other words, there is no gap between the adjacent variables in the structure.

Section Block: This block stores the section attributes for the form parts. The number of form parts are given by the SectionCount field in the header structure. The size of each section block is equal to the sizeof(StrSection). The data is stored in the packed structure.

Font Block: This section stores the font table. It begins with a signature byte of value 0xBE. The signature byte is followed by the data for each font. The number of entries in the font table is given by the FontCount variable in the form header structure. Each entry represents a font or a picture bitmap.

When the first integer byte of the font entry is non-zero, it is followed by picture bitmap information, as following:

Picture Height
WORD

Picture Width
WORD

Image Size
DWORD

Info Size
DWORD

Image
string of size Image Size

Info
string of size Info Size

When the first integer byte of the font entry is zero, it is followed by the LOGFONT structure (refer to Windows SDK for the description of the LOGFONT structure). The LOGFONT structure provides the font specification.

Visual Basic Support

Form Plus can be used by a Visual Basic application. The package includes a VBX for the use by a 16 bit application and an OCX for the use by a 32 bit application. A 16 bit application should include the FRS.BAS and FVB.VBX files in the project. You should also have FRS.DLL and FVB.VBX files available in the project directory. A 32 bit application should install the FOC.OCX and include the FRS.BAS in the project. You also need to have FRS32.DLL and FOC.OCX files available in the project directory.

The control manifests itself on the Visual Basic toolbar with an icon. Your application should create a FormPlus control by clicking on the icon.

Your application is responsible for providing the data field names to the Form Editor and data field values to the Form Executor. Your application communicates with the VBX or OCX using the events and function calls. This section describes the function calls and events in alphabetic order. The DMO_VBX (DMO_OCX for 32 bit) program included in the diskette provides an example of using these function calls and events. Please refer to this demo program source as needed.

VBX/OCX Properties

Design-Time Properties

DesignMode: Set this property to TRUE to invoke the form designer window, or set it to FALSE to invoke the form execution window.

Standalone:
Set this property to TRUE to create a pop-up control. The pop-up controls are not confined to the form on which they are created. They can also have their own menu structure. When this property is set to TRUE, the original control rectangle on the form is not visible at run-time.

HScroll:
Set to TRUE to create a horizontal scroll bar.

VScroll:
Set to TRUE to create a vertical scroll bar.

Menu:

This property is applicable only when the Standalone property is set to TRUE. When set to TRUE, this property attaches a menu to the standalone window.

Toolbar:
Set to TRUE to show the toolbar. This property is applicable only when the DesignMode property is also set to TRUE.

Run-Time Properties

Command:
This property is used to execute a FormPlus command. For a list of commands, please refer to the FrsCommand function in the Application Interface Functions chapter. Example:

Foc1.command=ID_INSERT_DATA

ReadFile:
Use this property to read a form template into the current control:

Foc1.ReadFile=“myform.fi”

SaveFile:
Use this property to save the current form template:

Foc1.SaveFile=“myfile.fi”

hFrsWnd:
This property returns the actual FormPlus control handle. Please note that hWnd (stock property) may not be the same as hFrsWnd when the control is created as a standalone window. In this case, hWnd refers to the invisible control during run-time, and hFrsWnd refers to the actual pop-up control. When calling a DLL function (a function with the ‘Frs’ prefix), you need to use the hFrsWnd handle, instead of the hWnd handle. Example:

FrsMenuSelect(Foc1.hFrsWnd, ID_INSERT_DATA)

Result:

This property is used to convey the result of an event to FormPlus.

VBX/OCX function calls

In addition to the DLL functions described in the Application Interface Functions chapter, the following functions are available for an application using the VBX or the OCX.

FvbDrawBitmap

Draw a bitmap to the output device context

int FvbDrawBitmap(hWnd as Integer, hImageWnd as Integer, image as Integer, x as Integer, y as Integer, width as Integer, height as Integer)

Description: This function is used within a ‘DrawPicture’ event handler to draw a bitmap (or part of) to the current form output device context. The ‘hWnd’ parameter is the window handle of the reporter control. The ‘hImageWnd’ is the window handle of the image control which contains the bitmap to draw. The ‘image’ parameter specifies a handle to a bitmap. The last four parameters specify the part of the bitmap to display. These parameters are specified in the percentage values. For example, to display the entire bitmap, the parameter values should be as follows: x=0, y=0, width=100, height=100. To display the bottom half of the bitmap, the parameter values should be as follows: x=0, y = 50, width = 100, height = 50.

Return Value: This function return TRUE if successful.

See Also: FvbGetPictureInfo, DrawPicture Event

FvbEnableFormWindow

Enable or disable the form designer window

int FvbEnableFormWindow(hWnd as Integer, enable as Integer)

Description: This function is used by the data field selection routines in their load/unload event handlers. The ‘load’ event handler should call this function with a 0 value for the ‘enable’ argument, thus disabling the form designer window for the duration of the user file/field selection. The ‘unload’ event handler should re-enable the form designer with a call to this function with a value of 1 for the ‘enable’ argument.

Return Value: This function always returns 1.

See Also:

FvbGetFieldInfo

Set the current Form Editor field

int FvbGetFieldInfo(hWnd as Integer, field as TypeField)

Description: This function is used in pair with FvbSetFieldInfo function within the SelectField event handlers. The ‘hWnd’ parameter is the window handle of the control. The ‘field’ parameter contains the specification for the current field to be selected.

Return Value: This function returns a TRUE value upon the successful execution.

See Also: FvbSetFieldInfo

FvbGetPictureInfo

Get the picture parameters

int FvbGetPictureInfo(hWnd As Integer, PictInfo as TypePict)

Description: This function is used to get the parameters to draw a ‘picture’ type field. This function is typically used within a ‘DrawPicture’ event handler. The ‘hWnd’ parameter is the window handle of the control. The information about the picture is returned by the ‘TypePict’ variable. The following parameters are available in the ‘TypePict’ structure:

Type TypePict

hDC as Integer
‘ device context of the reporting device

PictId as Integer
‘ the value of the current picture field

FieldId as Integer
‘ the field id that correspond to the current picture field

x as Integer
‘ X location of the picture rectangle

y as Integer
‘ Y location of the picture rectangle

width as Integer
‘ width of the picture rectangle

height as Integer
‘ height of the picture rectangle

End Type

Return Value: This function return TRUE if successful.

See Also: FvbDrawBitmap, DrawBitmap event

FvbSetFieldInfo

Set the current Form Editor field

int FvbSetFormField(hWnd as Integer, field as TypeField, valid as Integer)

Description: This function is used in pair with FvbGetFieldInfo function within the SelectField event handlers.
The ‘hWnd’ parameter is the window handle of the control. The ‘field’ parameter contains the updated data for the current field being selected. The ‘valid’ should be set to TRUE to indicate a valid field.

Return Value: This function returns a TRUE value upon the successful execution.

See Also: FvbGetFieldInfo

VBX Events

DrawPicture

Draw a picture field

Description: This event is fired by the Form Executor when it needs your application to draw a ‘picture’ type field. Your application will typically call the FvbGetPictureInfo function to retrieve the picture parameters and the FvbDrawBitmap function to draw your bitmap to the form output device context.

EnterData

Prompt user to enter data for a custom field.

FormPlus fires this event when the user clicks on a field which is flagged as FLAG_CUSTOM_DATA. In response, your application will typically first call the FvbGetFieldInfo function to retrieve the field name for the field to be prompted. After the user enters the data, the data is transferred to FormPlus using the FrsSetFieldData function. Your event handler should set the ‘result’ property to TRUE if the data entry is successful.

SelectField

User field selection handler

Description: This event is fired by the Form Editor when your user wishes to paste a data field to the form template. This event allows your application to prompt the user for the field (and file) selection and return the information about the selected field.

Typically, this event handler should be structured as following:

1.
Retrieve the current field structure using the FvbGetFieldInfo function.

2.
Prompt the user for the field and file selection using a list box or some other GUI function.

3.
Update in the field structure with the basic field information. The following field must be provided:

name:
Field name. Use -> to separate the file name, ex: SALE->DATE

type:
Field Type. See TYPE_ constants in the FRS.BAS file

width:
Maximum number of characters in the field.

DecPlace: Number of decimal places for a numeric or double type field

Optional fields:

FieldId:
A sequential id for the selected field.

ParaChar:
Paragraph break character for a word-wrapped text field.

4.
Return the updated field structure to the FormEditor using the FvbSetFieldInfo function.

VerifyData

User data verification handler

Description: This event is fired by the Form Executer when your user types in a data field or clicks on a system pushbutton. Typically, this event handler should be structured as following:

1. Retrieve the current field structure using the FvbGetFieldInfo function.

2.
Check the field source. If field source is ‘system’ (SRC_SYS), then take appropriate action for the pushbutton clicked by the user.

3.
If the field source is SRC_APPL (application field), then validate the data for the field. You can use FrsGetFieldData function to retrieve the data entered by the user. Set the ‘Result’ property to TRUE if the data is valid, otherwise set it FALSE.

Unload

This event is fired when the form editor or the form executor window is being closed. In response to this event your application should reset the ‘open’ flag in the ‘FormParm’ structure.

SaveAs

This event is fired when the user uses the ‘Save’ option to save a new form or when the user uses the ‘SaveAs’ option to save an existing form to another file name. The event contains the new name of the form file.

Delphi Interface

A Delphi application interfaces directly with the FRS.DLL (FRS32 for Win32). The VBX wrapper (FVB.VBX) is not needed to interface with the DLL. Please refer to the DMO_DLP.DPR demo program as an example of interfacing a Delphi application to Form Plus.

Interface Units: The package contains the following files to interface with a Delphi application:

FRS.PAS: This file contains the constant and type definition to interface with the DLL. This file is to be included in the Interface section of your application unit which interfaces with Form Plus. Example:

Interface

uses

{$I FRS.PAS}

FRS_PROT.PAS: This file contains the function declarations for the DLL. This file is to be included in the Implementation section of your application unit which interfaces with Form Plus. Example:

Implementation

uses

{$I FRS_PROT.PAS}

The FRS.PAS and FRS_PROT.PAS files together provide the same functionality as the FRS.H file does for a ‘C’ language application. The constants, types and function names in these units are the same as they are in the FRS.H file.

 Message Callback Function: The Form Plus form editor and form executer send a message to the parent window (your application form window) before closing the form editor or the form executer windows. Because Delphi does not include a provision to intercept custom messages, Form plus provides an alternative method of sending the message to a Delphi application. Your application defines a callback function to receive the message.

All callback functions in a Win32 application must be qualified by a stdcall qualifier. Example: function MsgCallback(hWnd: THandle; msg: Integer; wParam: Integer; lParam: LongInt); LongInt; stdcall;

The following example sets a flag when the form editor or the form executer session is being ended:

function MsgCallback(hWnd: THandle; msg: integer): LongInt;

begin

 if (msg=FRS_CLOSE) then ReportClose:=True; {set a global flag}

end;

For a callback function to start receiving messages, it must be registered with the DLL immediately after the form editor or the form executer is initialized. Example:

FrsForm(FormParm);
{launch form editor}

FrsSetMsgCallback(FormParm.hFrWnd,0,@MsgCallback); {register the callback function}

The first and the second arguments are the form editor window handle and the form id. The last argument is the pointer to your applications callback function to receive the Form Plus messages.

Visual C++ Interface

The Form Plus DLL can be used with a Visual C++ application without any change. Follow these general steps to call the FRS routines from a Visual C++ application:

1.
Include the FRS.H file into your application module that calls the FRS functions. Use the FRS API functions as necessary.

2.
Modify the alignment compiler option for your application to specify the alignment at 1 byte.

Recompiling FRS DLL files

If you need to modify the DLL source code and recompile within the Visual C++ environment, follow these steps to create a Visual C++ project:

Files: FRS*.C, FRS.DEF and FRS.RC

Executable Type: Windows DLL

Compiler Option: 1 Byte Alignment

Remaining parameters should be left at their default values.

