
Software License Agreement

HTML Add-on

version 26

Copyright (c) 1995-2024, Sub Systems, Inc.

All Rights Reserved

3200 Maysilee Street

Austin, TX 78728

512-733-2525

Software License Agreement

The Software is protected by copyright laws and international copyright treaties, as well
as other intellectual property laws and treaties. The Software is licensed, not sold. This
LICENSE AGREEMENT grants you the following rights:

A) This product is licensed per developer basis. Each developer working with this
package needs to purchase a separate license.

B) When used this product within a desktop application, you are granted the right to
modify and link the editor routine into your application. Such an application is free of
distribution royalties with these conditions: the target application is not a stand-alone
HTML viewer or a stand-alone HTML writer; the target application uses this product for
one operating system platform only; and the source code (or part) of the product is not
distributed in any form. As the HTML Add-on control needs TE Edit control to function,
you also need to purchase a copy of TE Edit control. Sub Systems, Inc. reserves the right
to prosecute anybody found to be making illegal copies of this software.

C. The DESKTOP LICENSE allows for the desktop application development. Your
desktop application using this product can be distributed royalty-free. Each desktop
license allows one developer to use this product on up to two development computers. A
developer must purchase additional licenses to use the product on more than two
development computers.

D. The SERVER LICENSE allows for the server application development. The server
licenses must be purchased separately when using this product in a server application.
Additionally, the product is licensed per developer basis. Only an UNLIMITED SERVER
LICENSE allows for royalty-free distribution of your server applications using this
product.

E. ENTERPRISE LICENSE: The large corporations with revenue more than $50 million
and large government entities must purchase an Enterprise License. An Enterprise
license is also applicable if any target customer of your product using the Software have
revenue more than $500 million. Please contact us at info@subsystems.com for a quote
for an Enterprise License.

F. Your license rights under this LICENSE AGREEMENT are non-exclusive. All rights not
expressly granted herein are reserved by Licensor.

G. You may not sell, transfer or convey the software license to any third party without
Licensor's prior express written consent.

H. The license remains valid for 12 months after the issue date. The subsequent year

license renewal cost is discounted by 20 percent from the license acquisition cost. The
license includes standard technical support, patches and new releases.

I. You may not disable, deactivate or remove any license enforcement mechanism used
by the software.

This software is designed keeping the safety and the reliability concerns as the main
considerations. Every effort has been made to make the product reliable and error free.
However, Sub Systems, Inc. makes no warranties against any damage, direct or indirect,
resulting from the use of the software or the manual and can not be held responsible for
the same. The product is provided 'as is' without warranty of any kind, either expressed
or implied, including but not limited to the implied warranties of suitability for a particular
purpose. The buyer assumes the entire risk of any damage caused by this software. In
no event shall Sub Systems, Inc. be liable for damage of any kind, loss of data, loss of
profits, interruption of business or other financial losses arising directly or indirectly from
the use of this product. Any liability of Sub Systems will be exclusively limited to refund of
purchase price.

Sub Systems, Inc. offers a 30-day money back guarantee with the product. The money
back guarantee is not available when the product is purchased with dll source.

Disclaimer

This software is designed keeping the safety and the reliability concerns as the main
considerations. Every effort has been made to make the product reliable and error free.
However, Sub Systems, Inc. makes no warranties against any damage, direct or indirect,
resulting from the use of the software or the manual and can not be held responsible for
the same.

IBM PC,XT AND AT are the trademarks of International Business Machine.

MSDOS, Windows, Visual C++, MFC, and Visual Basic are the trademarks of Microsoft
Corp. (for ease of reading Windows refer to MS Windows)

Delphi is the trademark of Borland International.

The Graphics Interchange Format(c) is the Copyright property of CompuServe
Incorporated. GIF(sm) is a Service Mark property of CompuServe Incorporated.

General Overview

This product allows your application to display an HTML document, navigate among
documents or within the same document, edit HTML text, and convert RTF text to the
HTML format. This product utilizes the TE Editor Control to actually display the text in a
window. Therefore, the latest ter29.dll must be available to use this product.

Picture Formats Support: The product supports the following picture formats:

BMP MS Windows device independent bitmap format

WMF MS Windows placeable metafile format

JPG JPEG format

PNG Portable Network Graphic format

TIFF TIFF format

In addition the product allows your application to translate other image formats which are
not currently supported by HTML Add-on. Please refer to HTS_PICTURE message later
in the manual.

Sub Systems also offers free support for GIF, GIF animation, and TIFF formats when you
have a Unisys license to use these files.

Getting Started

This chapter describes the contents of the software diskettes and provides a step by step
process of incorporating the Hts DLL into your application.

In This Chapter
Files
License Key
Linking the Editor to Your Application
Interfacing with the Hts DLL

Files

The package contains the DLL files, the source code files, the include files, resource
files, and make files that are necessary to incorporate the Hts routine into your
application. In addition, you will also need the latest version of ter29.dll (TE Edit control).

The package also includes a set of files to construct a demo program. The demo
program shows by example the process of linking the DLL to your program.

DLL Demo Files:

The following demo files are included in the c_demo.zip file.

DEMO.C Source code for the demo program

DEMO.H Include file for the demo program

DEMO.RC Resource source file for the demo program

DEMO.DEF Definition file for linking the demo program

DEMO.EXE Executable demo program

DEMO_DLG.H Dialog Identifiers for the demo program

DEMO_DLG.DLG Dialog templates for the demo program

DEMO_DLG.RES Compiled dialogs for the demo program

Hts Source Files:

Hts.C Contain initialization and messaging functions.

Hts1.C Contains editing functions.

HTS_IO.C File input functions

HTS_IO1.C File output functions

HTS_IMG.C Image translation and decompression routines.

HTS_MISC.C Other auxiliary functions.

(These source files with .C extension contain the Include
statements for Hts.H, Hts1.H, WINDOWS.H and other runtime
function headers)

Hts.H The include file to include into your application module that calls
the TER routine. It contains the constant definitions and the
prototypes for the API functions.

Hts1.H The include file used by the Hts modules. It contains global
variables and some definition statements. All variable declaration
statements are prefixed by 'PREFIX' word. The PREFIX word is
defined in all source files except Hts.C as 'extern'. This strategy
avoids the need for duplicate declarations for the main file and
other auxiliary files that refer to the global variables as 'extern'.
This file contains the Include statements for HTS_PROT.H and
other header files.

HTS_PROT.H Contains the prototypes for the internal Hts functions.

Hts.RC Main resource file for the Hts routines.

Hts.RES The compiled resource file required by the Windows' dialog editor.

Hts.DEF The definition file to create the hts26.dll file.

hts26.dll The DLL .

hts26.lib Import library for hts26.dll

Visual Basic Interface and Demo Files:

Hts.BAS Function declaration file.

DMO_VBX.FRM Demo form file.

DMO_VBX.MAK Demo make file.

Delphi Interface and Demo Files:

Hts.PAS Global constant declaration file.

HTS_PROT.PAS Function declaration file.

DMO_DLP.DPR Demo project file.

DMO_DLP1.DFM Demo form file.

DMO_DLP1.PAS Demo code file.

Make Files:

MAKE-MC.BAT Compiles and links the Hts routines using

MAKE-MC Microsoft 'C'.

MAKE-BC.BAT Compiles and links the Hts routines using

MAKE-BC Borland 'C'.

License Key

Your license key is e-mailed to you after your order for Html Add-on is processed.

When importing/exporting HTML text directly in TE Edit Control:

When using Html Add-on only to import/export HTML text in TE Edit Control, please use
the TerSetHtmlAddOnKey method exported by TE Edit Control at the beginning of your
program:

TerSetHtmlAddOnKey("xxxxx-yyyyy-zzzzz")

Replace the 'xxxxx-yyyyy-zzzzz' by your Html Add-on license key. The license key for TE
Edit Control will not work with the TerSetHtmlAddOnKey method.

Or, you can use the HtmlAddOnKey property of the Toc ActiveX control.

When using HTML Add-on as an HTML Editor:

You would set the license key for a stand-alone usage by using the HtsSetLicenseKey
function. This should be preferably done before calling other methods.

HtsSetLicenseKey("xxxxx-yyyyy-zzzzz")

Replace the 'xxxxx-yyyyy-zzzzz' by your Html Add-on license key.

Linking the Editor to Your Application

The package contains the hts26.lib file which must be linked to your application. You also
need the ter29.lib to access the underlying editor functions. Modify the link statement of
your application to include the hts26.lib and ter29.lib files into the list of libraries.

Your application modules which use Hts API functions, should also include the Hts.H file.
The Hts.H file includes the TER.H file which is needed to interface with the ter29.dll

Interfacing with the Hts DLL

The Hts and TER DLLs work together to create an HTML viewer/editor control. The Hts
DLL performs the HTML related activities, whereas the TER DLL displays the text and
processes the mouse messages. Your application needs to perform these steps to
incorporate the Hts and TER DLLs into your application (please refer to the DEMO.C
module for an example).

1. Create a window of the TER_CLASS. You can use any available method to create
this window, such as using the CreateWindow SDK call, CreateTerWindow
function (TER API), creating a TER control inside a dialog box, or creating a
window using the MFC class wrappers such as CTer and CTerView classes.
While creating a window using the CreateTerWindow function, you must specify
an empty buffer because the Hts DLL needs an empty window to load a HTML
document.

Word-wrap and Fitted View modes must always be turned on when creating a
TER window. For a description of other viewing modes, please refer to the TE Edit
control manual.

The ReadOnly flag determines the viewer or editor session. Turn on the
ReadOnly flag to create an HTML viewer.

2. Call the HtsInitialize API to initialize the HTML operational variables for the newly
created window. Example:

HtsInitialize(hTerWin, hParentWin);

The specified parent window receives the HTML messages.

3. Read an HTML document into the window. Example:

HtsRead(hTerWin, HTML_FILE, filename, NULL, 0, NULL);

The above statement reads an HTML disk file into the window.

Please refer to the Application Interface Function chapter for a detailed description
of these API functions.

The parent window of your application also needs to handle these messages:

HTS_TITLE: This message contains the document title. Your application
will typically display this title as the window caption.

HTS_LINK: This message prompts your application to load another HTML
document.

HTS_PICTURE: This message is sent to resolve the path for a picture element
currently being loaded into the window.

HTS_FORM: This message is fired when the user submits a form.

Please refer to the Message Communication chapter for a detailed description of
these messages.

4. If you are invoking an HTML editing session, use the HtsCommand function within
your application menu to invoke various editing functions.

Application Interface functions

These API functions allow you to load and manipulate HTML data in an existing TER
window. Your application must include the Hts.H file, which defines these functions.

Most functions in this chapter need the first argument as the window handle (hWnd) of
the control. This parameter requires further description. When the control contains a
normal HTML document without the embedded frames, the hWnd parameter is used by

the function without modification.

However, when the control contains a document containing embedded frames, the hWnd
parameter is modified internally. Unless specified, your program still needs to supply the
window handle of the control as the 'hWnd' parameter. The 'hWnd' parameter that your
program supplies can be modified as following:

If the user clicked on a hyperlink text, the editor remembers the target frame (a
part of the href specification) name for the hyperlink. The editor uses the window
handle of the target frame instead of the one supplied by your program. To reset
the target frame, please use the HtsSetTarget function. The target frame is also
reset automatically when your program reads the next (link) document using the
HtsRead function. This feature allows you to automatically load the link
document into the correct frame window.
When the user clicks inside a frame window, that frame window is treated as the
active window. The editor uses the window handle of the active window instead
of the one supplied by your program. This feature ensures that the API functions
are applied to the content of the current active window.

The following is a description of the Hts API functions in an alphabetic order:

Note: The API provided in this help file is now superseded by the functions in TE. Please
use the TE functions instead.

In This Chapter
HtsAddSelectionItem
HtsClearWindow
HtsClose
HtsCommand
HtsDelSelectionItem
HtsEditFormId
HtsEditRule
HtsGetActiveWnd2
HtsGetCurForm
HtsGetFont
HtsGetFontSize
HtsGetFieldData
HtsGetFormInfo
HtsGetFrameName
HtsGetLinkDataEx
HtsGetLinkInfo
HtsGetParaAttrib
HtsGetTagData
HtsGetTarget
HtsGetTopWin
HtsGetUserTag
HtsInitialize
HtsInsertButtonField
HtsInsertLink
HtsInsertPicture
HtsInsertRule
HtsInsertSelectField
HtsInsertTextField
HtsInternetGet
HtsInViewMode
HtsIsHttpFile

HtsIsLoaclFile
HtsLoadControl
HtsLparam2String
HtsMenuEnable
HtsMenuSelect
HtsModified
HtsParaNormal
HtsPositionName
HtsRead
HtsReformat
HtsSave
HtsSetActiveWnd
HtsSetBkColor
HtsSetBkPict
HtsSetDefaultTarget
HtsSetDocTitle
HtsSetDownloadDir
HtsSetFlags
HtsSetFlags2
HtsSetFont
HtsSetFontDlg
HtsSetFontSize
HtsSetFontSizeTbl
HtsSetForm
HtsSetFormId
HtsSetFrameName
HtsSetHeader
HtsSetLinkInfo
HtsSetLinkInfoDlg
HtsSetListEx
HtsSetMiscCharType
HtsSetMiscParaType
HtsSetNewBkColor
HtsSetNewTextColor
HtsSetParaSpace
HtsSetPicture
HtsSetPictUseMap
HtsSetPictFileBase
HtsSetReadOnly
HtsSetTableWidth
HtsSetTarget
HtsSetUserTag
HtsString2Lparam
HtsUpdateLinkEx
HtsWrite
TvbSetEventResult

HtsAddSelectionItem

Add an item to the selection box.

BOOL HtsAddSelectionItem(hWnd, CtlId, text, value, selected, insert)

HWND hWnd; The handle of the window to be accessed

int CtlId; The control id of the current selection field. Set this parameter
to -1 to access the selection box at the current cursor location.

LPBYTE text; Text string to display for the item. Set this field to NULL to
prompt the user for parameters.

LPBYTE value; Value string for the item. This parameter can be set to NULL.

BOOL selected; Set to TRUE to select the new item after it is inserted.

BOOL insert; Set to TRUE to insert the new item before the current item. Set
to FALSE to append the new item after the last item.

Return Value: This function returns TRUE if successful.

See Also:
HtsInsertSelectField
HtsDelSelectionItem

HtsClearWindow

Clear the current window:

BOOL HtsClearWindow(hWnd)

HWND hWnd; The handle of the window to be accessed

Description: Use this function to remove existing text from the given window. This
function also releases resources used by the previous text. This function is usually called
before reading a new HTML document into a window

Return Value: This function returns TRUE if successful.

See Also:
HtsRead

HtsClose

Close the current window after saving modified data.

BOOL HtsClose(hWnd, OutputTo, FileName, hBuf, BufLen)

HWND hWnd; The handle of the window to be accessed

int OutputTo; Output to:

HTML_FILE: Specify the output file name using the
FileName argument.

HTML_BUF: The output buffer is returned via the hBuf
and BufferLen parameters.

LPBYTE FileName; Output file name. The file name may be prefixed by a
subdirectory path. Set to NULL when the 'OutputTo' argument
is HTML_BUF.

HGLOBAL far *hBuf; When saving to a buffer, this pointer receives the global
memory handle of the buffer containing the text.

LPLONG BufLen; When saving to a buffer, this pointer receives the buffer length.

Description: This function calls the HtsSave function to save the text if modified. Then it
calls the CloseTer function to close the TER window. This function is meant to be called
from your application's 'close' or 'quit' menu options.

Return Value: This function returns a TRUE value when successful.

See Also:
HtsSave

HtsCommand

Execute a menu command.

BOOL HtsCommand(hWnd, MenuId)

HWND hWnd; The handle of the window to be accessed

int MenuId; The menu id for the command to execute.

Description: The following predefined menu ids are available:

HTM_ADDRESS Set the 'Address' attribute for the paragraph.

HTM_ADD_SELECT_ITEM Add items to the current selection (list/combo) box.

HTM_BLOCKQUOTE Set the 'Blockquote' attribute for the paragraph.

HTM_BOLD Set bold character style.

HTM_CENTER Center the paragraph.

HTM_CHAR_NORMAL Reset all character styles.

HTM_CHAR_TYPE_NORMAL Reset miscellaneous character types such as
Example, Variable, Sample, etc.

HTM_COPY Copy the selected text to clipboard.

HTM_CUT Cut the selected text to clipboard.

HTM_DEL_SELECT_ITEM Delete the selected items from the current selection
(list/combo) box.

HTM_EDIT_FORM_ID Edit the parameters for a form id.

HTM_EDIT_LINK Edit the link parameters.

HTM_EDIT_RULE Edit parameters for the current horizontal rule.

HTM_EDITOR Switch to the editor mode.

HTM_EXAMPLE Set the 'Example' type to text.

HTM_FONT_COLOR Set font color

HTM_FONT_SIZE Set font size

HTM_FONTS Edit the font attribute for the viewer.

HTM_HDR1 Apply the 'Header 1' attribute to the paragraph.

HTM_HDR2 Apply the 'Header 2' attribute to the paragraph.

HTM_HDR3 Apply the 'Header 3' attribute to the paragraph.

HTM_HDR4 Apply the 'Header 4' attribute to the paragraph.

HTM_HDR5 Apply the 'Header 5' attribute to the paragraph.

HTM_HDR6 Apply the 'Header 6' attribute to the paragraph.

HTM_HDR7 Apply the 'Header 7' attribute to the paragraph.

HTM_INSERT_BUTTON_FIELD Insert a button or checkbox field.

HTM_INSERT_IMAGE_FIELD Insert an image field.

HTM_INSERT_LINK Insert a hyperlink.

HTM_INSERT_PICT Insert a picture.

HTM_INSERT_RULE Insert a horizontal rule.

HTM_INSERT_SELECT_FIELD Insert a selection (list/combo) box.

HTM_INSERT_TEXT_FIELD Insert a text line, text area, or password field.

HTM_ITALIC Set the italic style.

HTM_JUSTIFY Justify the paragraph

HTM_KBD Set the Keyboard character type.

HTM_LEFT Left justify the paragraph.

HTM_LINK Edit the color and style of link text.

HTM_LIST_DD Set the 'Definition Data' attribute for the paragraph.

HTM_LIST_DT Set the 'Definition Term' attribute for the paragraph.

HTM_LIST_LVL1 Set level 1 for the list item.

HTM_LIST_LVL2 Set level 2 for the list item.

HTM_LIST_LVL3 Set level 3 for the list item.

HTM_LIST_LVL4 Set level 4 for the list item.

HTM_LIST_LVL5 Set level 5 for the list item.

HTM_LIST_LVL6 Set level 6 for the list item.

HTM_LIST_LVL7 Set level 7 for the list item.

HTM_LIST_OL Set the 'Ordered List' attribute for the paragraph.
Please note that numbering for the ordered list is not
available in the 'Edit' mode.

HTM_LIST_UL Set the ' Unordered List' attribute for the paragraph.

HTM_NEW Save any modifications and clear the window.

HTM_NEW_LIST_ITEM Toggle the 'New Item' property of a list item.

HTM_OPEN Save any modifications and open a new file.

HTM_PARA_FORM Mark a text area as a form.

HTM_PARA_NORMAL Reset paragraph attributes such as justification,
header, list, miscellaneous types, etc.

HTM_PARA_SPACE Toggle space before and after the paragraph.

HTM_PRE Set the 'preformatted' attribute for the paragraph.

HTM_PRINT Print the text.

HTM_PRINT_PREVIEW Print preview.

HTM_REFORMAT Reformat the document.

HTM_RIGHT Right justify the paragraph.

HTM_SAMP Set the 'Sample' attribute for the text.

HTM_SAVE Save the current file.

HTM_SAVE_AS Save the current file in another name.

HTM_SET_FORM_ID Set the form id for the current form.

HTM_SHOW_HIDDEN Show the hidden text.

HTM_SHOW_PARA_MARK Show the paragraph markers.

HTM_STRIKE Set the 'strike' style for the text.

HTM_SUBSCR Set the 'subscript' style for the text.

HTM_SUPSCR Set the 'superscript' style for the text.

HTM_TBL_APPEND_COL Append a table column.

HTM_TBL_APPEND_ROW Append a table row.

HTM_TBL_CREATE Create a table.

HTM_TBL_DELETE_COL Delete the current table column or all selected table
columns.

HTM_TBL_DELETE_ROW Delete the current table row or all selected table
rows.

HTM_TBL_INSERT_COL Insert a table column before the current column.

HTM_TBL_INSERT_ROW Insert a table row before the current row.

HTM_TT Set the 'Typewriter' character type.

HTM_ULINE Underline the text.

HTM_VAR Set the 'variable' character type.

HTM_VIEWER Switch to the viewer mode.

Return Value: This function returns FALSE if an incorrect menu id is specified, otherwise
it returns TRUE.

See Also:
HtsMenuSelect

HtsDelSelectionItem

Delete the selected items from the selection box.

BOOL HtsDelSelectionItem(hWnd, CtlId)

HWND hWnd; The handle of the window to be accessed

int CtlId; The control id of the current selection field. Set this
parameter to -1 to access the selection box at the current
cursor location.

Description: If more than one item is selected in the selection box, all selected items will
be deleted.

Return Value: This function returns TRUE if successful.

See Also:
HtsInsertSelectField
HtsAddSelectionItem

HtsEditFormId

Edit or create a form id.

int HtsEditFormId(hWnd, new, id, method, action, ShowDialog)

HWND hWnd; The handle of the window to be accessed

BOOL new; Set to TRUE to create a new form id.

int id; When the 'new' parameter is FALSE, the 'id' parameter
specifies the form id to edit.

int method; Method: METHOD_GET or METHOD_POST

LPBYTE action; Action string for the form id.

BOOL ShowDialog; Set to TRUE to prompt the user for the parameters.

Description: A form id is associated with every form. You will typically create a form id
before creating a form.

Return Value: The function returns the form id when successful, otherwise it returns -1.

See Also:
HtsSetFormId
HtsSetForm

HtsEditRule

Edit the horizontal rule parameters.

BOOL HtsInsertRule (hWnd, width, thickness, align, repaint)

HWND hWnd; The handle of the window to be accessed

int width; Width of the rule in terms of percentage of the screen width.

int thickness; Thickness of the rule in points.

int align; Rule alignment: LEFT, CENTER, RIGHT_JUSTIFY.

BOOL repaint; Repaint the screen after this operation.

Description: This functions edits the parameters for the horizontal rule at the current
cursor location. Set the width or the thickness parameter to 0 to invoke a user dialog box
to accept the parameters.

Return Value: The function returns a TRUE value when successful.

See Also:
HtsInsertRule

HtsGetActiveWnd2

Retrieve the window handle of the active frame.

HWND HtsGetActiveWnd(hWnd)

HWND HtsGetActiveWnd2(hWnd,FrameName)

HWND hWnd; The window handle of the control

LPBYTE FrameName; The frame name to get the wnidow handle

Description: This function is useful for determining the current active frame (or the frame
with the specified name) within a document that contains embedded frames.

Return Value: This function returns the window handle of the frame that currently has the
focus.

See Also:
HtsSetActiveWnd

HtsGetCurForm

Retrieve the form id at the current cursor position.

int HtsGetCurForm(hWnd, TotalForms)

HWND hWnd; The window handle of the control

LPINT TotalForms; The pointer to receive the total number of forms in the
document.

Description: This function is useful for determining the current form id and the total
number of forms in the document.

Return Value: This function returns the form id of the current form. It returns -1 if the
current line does not belong to a form. It also returns -1 if the current form does not
contain any fields.

See Also:
HtsGetFormInfo

HtsGetFont

Get font information about an HTML style element.

BOOL HtsGetFont(hWnd, font, typeface, PointSize, style, TextColor, TextBkColor)

HWND hWnd; The window handle of the control

int font; Font id for an HTML style element. Refer to the description
for a list of the font ids.

LPBYTE typeface; The pointer to receive the font typeface. This buffer should
be able to hold up to 32 characters.

LPINT PointSize; The pointer to receive the point size of the font.

UINT far *style; The pointer to receive the style bits for the font:

BOLD: Bold

ITALIC: Italic

ULINE: Underline

STRIKE Strikethrough

COLORREF far *TextColor; The pointer to receive the text foreground color.

COLORREF far *TextBkColor; The pointer to receive the text background color.

Description: This function can be used to get font and color information about an HTML
style element. The desired style element is specified using the 'font' argument. The
following style elements can be specified:

FONT_TEXT: Body Text

FONT_H1: Header 1

FONT_H2: Header 2

FONT_H3: Header 3

FONT_H4: Header 4

FONT_H5: Header 5

FONT_H6: Header 6

FONT_H7: Header 7

FONT_ADDRESS: Address

FONT_QUOTE: Block Quote

FONT_MENU: Menu List

FONT_DIR: Directory List

FONT_PRE: Preformatted Text

FONT_EXAMPLE: Example

FONT_VAR: Variables

FONT_KBD: Keyboard Input

FONT_SAMP: Sample Text

FONT_HV: Helvetica Font

FONT_TR: Times Roman

Return Value: This function returns a TRUE value when successful.

Example:

 BYTE typeface[32];

 int PointSize;

 UINT style;

 COLORREF TextColor, TextBkColor;

 HtsGetFont(hWnd, FONT_H1, typeface, &PointSize, &style,

 &TextColor, &TextBkColor);

 // The above example retrieves the current font information

 for the 'Header1' style element.

See Also:
HtsSetFont
HtsGetLinkInfo

HtsGetFontSize

Get font size at the current cursor location.

int HtsGetFontSize(hWnd, IsRelative)

HWND hWnd; The window handle of the control

LPINT IsRelative; (output) This location receives a TRUE value (1) if the font
size is relative, or a FALSE value (0) if the font size is
absolute.

Return Value: This function returns the HTML font size (1 to 7) at the current cursor
location. A value of 0 indicates an error.

See Also:
HtsSetFontSize

HtsGetFieldData

Get the data for a field in a form.

int HtsGetFieldData(hWnd, FormId, FieldId, name, IntData, TextData, TextDataLen)

HWND hWnd; The window handle of the control

int FormId; The form id which contains the field. Set the FormId and
FieldId parameters to –1 to get the information about the
last 'submit' field clicked by the user.

int FieldId; The field number for which to retrieve data.

LPBYTE name; (OUTPUT) The name of the field.

LPINT IntData; (OUTPUT) The pointer to receive the integer data.

LPBYTE TextData; (OUTPUT) The pointer to receive the text data.

int TextDataLen; The size of the TextData buffer.

Description: This function retrieves the information about the specified field id in the
specified form. This function is called by your application when it receives the
HTS_FORM message.

The 'name' argument receives the field name. The IntData and the TextData pointers
receive additional information about the field. This information varies for each field type.
The following describes the usage for the IntData and TextData parameters by field type:

FTYPE_TEXT, FTYPE_PASSWORD, or FTYPE_TEXTAREA:

The TextData parameter receives the text data for the control. The IntData parameter is
not used.

FTYPE_RADIO or FTYPE_CHECKBOX

The IntData is non-zero if the control is checked, otherwise it is zero. The TextData
parameter is not used.

FTYPE_HIDDEN:

The TextData parameter receives the hidden text value. The 'IntData' parameter is not
used.

FTYPE_IMAGE:

The TextData parameter receives the x and y pixel positions in the X,Y format. Example,
a x=20 and y=10 pixel position will return a string containing "20,10". The IntData
parameter is not used.

FTYPE_SELECT:

The TextData parameter receives the selections. If more than one item is selected, each
item is separated by a '|' delimiter. The IntData parameter is not used.

Return Value: When successful, this function returns the field type:

FTYPE_TEXT: Single line text control.

FTYPE_RADIO: Radio button.

FTYPE_SUBMIT: 'Submit' push button.

FTYPE_RESET: 'Reset' push button.

FTYPE_TEXTAREA: Multiline text control.

FTYPE_CHECKBOX: Check box.

FTYPE_HIDDEN: Hidden text.

FTYPE_PASSWORD: Single line password text control.

FTYPE_IMAGE: Image.

FTYPE_SELECT: Combo box or a list box.

This function returns -1 when an error occurs.

Example:

 BYTE action[100],method[10],name[100],TextData[300];

 int i,TotalFields,FieldType,IntData;

 TotalFields=HtsGetFormInfo(hWnd, 0, action,method);

 // Retrieve information about a form id 0.

 for (i=0;i<TotalFields;i++) {

 FieldType=HtsGetFieldData(hWnd,0,i,name,&IntData,

 TextData,299);

 }HTS_FORM (message)

See Also:
HtsGetFormInfo

HtsGetFormInfo

Get the information about a form.

int HtsGetFormInfo(hWnd, FormId, action, method)

HWND hWnd; The handle of the window to be accessed

int FormId; The form id for which to retrieve the information.

LPBYTE action; (output) This fields receives the 'action' text for the form.

LPBYTE method; (output) This field receives the 'method' text for the form.
The method text string is either 'GET' or 'POST'.

Description: This function is typically called when your application receives the
HTS_FORM message.

Return Value: On successful return, this function returns the total number of fields in the
form. Otherwise it returns -1.

Example:

 BYTE action[100],method[10];

 int TotalFields;

 TotalFields=HtsGetFormInfo(hWnd, 0, action,method);

 // Retrieve information about a form id 0.

See Also: HTS_FORM (message)

See Also:
HtsGetFieldData

HtsGetFrameName

Retrieve the current frame name.

BOOL HtsGetFrameName(hWnd, name)

HWND hWnd; The handle of the window to be accessed. This window
handle is used as given without any modification described
in the beginning of this chapter.

LPBYTE name; The location to receive the current frame name.

Return Value: This function returns a TRUE value when successful.

See Also:
HtsSetFrameName

HtsGetLinkDataEx

Retrieve the parameters for the link at the cursor position.

BOOL HtsGetLinkData(hWnd, href, name)

BOOL HtsGetLinkDataEx(hWnd, href, name, target)

HWND hWnd; The handle of the window to be accessed

LPBYTE href; The pointer to receive the 'href' parameter.

LPBYTE name; The pointer to receive the 'name' parameter.

LPBYTE target; The pointer to receive the frame target for the link.

Return Value: This function returns a TRUE value when successful.

See Also:
HtsUpdateLinkEx

HtsGetLinkInfo

Get the color and style attributes for the link text.

BOOL HtsGetLinkInfo(hWnd, style, TextColor)

HWND hWnd; The handle of the window to be accessed

UINT far *style; The pointer to receive the style bits for the link font:

BOLD: Bold

ITALIC: Italic

ULINE: Underline

STRIKE Strikethrough

COLORREF far *TextColor; The pointer to receive the link foreground color.

Description: This function is used to retrieve the text color and style information for the
link text.

Return Value: This function returns a TRUE value when successful.

Example:

 UINT style;

 COLORREF TextColor;

 HtsGetLinkInfo(hWnd, &style, &TextColor);

See Also:
HtsSetLinkInfo
HtsGetFont

HtsGetParaAttrib

Get current paragraph attributes.

BOOL HtsGetParaAttrib(hWnd, HdrLevel, ListType, ListLevel, ParaAuxId, MiscType)

HWND hWnd; The handle of the window to be accessed

LPINT HdrLevel; This pointer returns the header level. A header level of 0
indicates a non-header paragraph.

LPINT ListType; This pointer returns the list type:

PARA_LIST_NONE: Not a list.

PARA_LIST_OL: Ordered list.

PARA_LIST_UL: unordered list.

PARA_LIST_DIR: Directory list.

PARA_LIST_MENU: Menu list.

PARA_LIST_DL: Definition list.

LPINT ListLevel; This pointer returns the list level for the list type of paragraph.
A list level of 0 indicates a non-list type of paragraph.

UINT far *ParaAuxId; Addition paragraph attribute bits:

PARA_FORM: This is paragraph belongs to a
form.

PARA_BEGIN_LI: First paragraph of a list item.

PARA_DT: When ListType is set to
PARA_LIST_DL, then this bit

indicates the definition term for the
definition list.

Use the logical OR operator to check the attribute bits.

LPINT MiscType: Miscellaneous types:

PARA_BLOCKQUOTE: Block quote.

PARA_ADDRESS: Address.

PARA_HR: Horizontal rule.

PARA_PRE: Preformatted text.

Return Value: This function returns TRUE when successful.

HtsGetTagData

Retrieve the tag data.

int HtsGetTagData(hWnd, type, id, start, int1, int2, str1, str2)

HWND hWnd; The handle of the window to be accessed

int type; Tag type

int id; Tag id

int start; Index to begin the search from. Set to 0 to search the entire
tag table.

LPINT int1; The location to return the first integer data associated with
this tag.

LPINT int2; The location to return the second integer data associated
with this tag.

LPBYTE str1; The location to return the first string data associated with
this tag.

LPBYTE str2; The location to return the second string data associated with
this tag.

Description: The HTML add-on stores certain object data into a tag table. This function
allows you to search the tag table and retrieve the associated tag values. A tag can have

up to 2 integer values (int1 and int2) and up to 2 string values (str1 and str2). Not all tags
use all the values.

This table displays the available tag types, the associated id value and the data values:

Values

Tag Type Tag Id Int1 Int2 String1 String2

TAG_CELL_QFN Cell Id Qfn String

TAG_META HMETA_HTTP_EQUIV http-equiv content

TAG_META HMETA_NAME name content

TAG_USEMAP Picture id 'Usemap' string

Return Value: The function returns an index into the tag table if the specified tag type/id
is found. It returns -1 to indicate that the specified tag type/id was not found in the tag
table.

Example:

int int1, int2,

BYTE string1[300],string2[300];

HtsGetTagData(hWnd,TAG_USEMAP,PictId,0,int1,int2,

 string1,string2);

This function returns the 'usemap' string for the specified picture id in the 'string1'
variable.

HtsGetTarget

Retrieve the current target frame for the hyperlink jump.

BOOL HtsGetTarget(hWnd, target)

HWND hWnd; The handle of the window to be accessed

LPBYTE target; The pointer to receive the current target frame name.

Return Value: This function returns a TRUE value when successful.

See Also:
HtsSetTarget

HtsGetTopWin

Get the window handle of the top window in the current frame set.

HWND HtsGetTopWin(hWnd)

HWND hWnd; The handle of the window to be accessed

Description: A framed html document is displayed using one or more child (frame)
windows which are contained within the top window. This function is useful in determining
the window handle of the top window.

Return Value: This function returns the window handle of the top window in the current
frame set. It returns a NULL to indicate an error condition.

HtsGetUserTag

Get the text data for the user tag.

BOOL HtsGetUserTag(hWnd, TagId, TagText)

HWND hWnd; The handle of the window to be accessed

int TagId; Tag id for the user tag to retrieve

LPBYTE TagText; The string to receive the tag data.

Description: This function retrieves the text data associated with the given user tag id.

Return Value: This function returns TRUE if the user tag is found. Otherwise it returns
FALSE.

See Also:
HtsSetUserTag

HtsInitialize

Initialize the Hts operating variables.

BOOL HtsInitialize(hWnd, hParentWnd)

HWND hWnd; The handle of the window to be accessed

HWND hParentWnd; The parent of the TER window to receive the messages.

Your application needs to receive messages from the Hts
DLL. Therefore, this argument must specify a valid parent
window handle.

Description: This function must be called immediately after creating a TER window and
before calling any other Hts API function. This routine performs the following functions:

Request space allocation from the TER window to hold the Hts DLL variables.
Initialize the Hts DLL variables.
Initialize and create fonts for the HTML style elements.
Modify the TER environment variables.
Set a callback from the TER DLL to receive the mouse messages.

The HtsInitialize function should not be used when using TE Edit Control functions
such as GetTerBuffer, SetTerBuffer, ReadTerFile, SaveTerFile, and the Data
property to import or export HTML text.

Return Value: The function returns a TRUE value when successful.

Example:

HWND hWnd=CreateWindows(..........); // create a window

 of TER_CLASS

HtsInitialize(hWnd,hParentWnd);

HtsInsertButtonField

Insert a button or check-box field into form.

BOOL HtsInsertButtonField(hWnd, name, type, checked, value, repaint)

HWND hWnd; The handle of the window to be accessed

LPBYTE name; The name of the text field (null terminated string). Set this
parameter to NULL to prompt the user for the parameters.

int type; The field type can be one of the following values:

FTYPE_RADIO: Radio button

FTYPE_CHECKBOX: Check-box field

FTYPE_SUBMIT: Submit button

FTYPE_RESET: Reset button

BOOL checked; For the radio button and check-box fields, this parameter
specifies the initial 'check' status of the field.

LPBYTE value; Field value string. This parameter can be set to NULL.

BOOL repaint; Repaint the screen after this operation.

Return Value: If successful, the function returns the control id of the new field. Otherwise
it returns 0. You can use the Windows SDK function GetDlgItem to translate the control id
into the window handle of the control.

See Also:
HtsInsertTextField
HtsInsertSelectField

HtsInsertLink

Insert a hyperlink at the current location.

BOOL HtsInsertLink(hWnd, LinkText, LinkPict, LinkHref, LinkName, IsMap, repaint)

HWND hWnd; The handle of the window to be accessed

LPBYTE LinkText; Link text (null terminated) string for a text type link.

LPBYTE LinkPict; picture file name for a picture type link. This function supports
BMP, WMF, PNG, and JPEG picture file formats.

In addition, Sub Systems also offers free additional support for
GIF and TIFF picture files when you have a Unisys license to
use these files.

Only one of the above parameters (LinkText or LinkPict) may
be used.

If both the 'LinkText' parameter and the 'LinkPict' parameters
are NULL, then this function will display a dialog box for the
user to enter the parameters.

LPBYTE LinkHref; Href string (NULL terminated) for the link. This parameter
should contain the url for the link

LPBYTE LinkName; Link name (NULL terminated) string.

At least one of the 'LinkHref' or 'LinkName' parameters must be
provided.

BOOL IsMap; Set to TRUE to transmit mouse click location on the picture (on
a picture link). This parameter is not used for a text link.
(default is FALSE).

BOOL repaint; Repaint the screen after this operation.

Return Value: The function returns a TRUE value when successful.

See Also:
HtsInsertPicture

HtsInsertPicture

Insert a picture at the current location.

int HtsInsertPicture(hWnd, file, align, IsMap, IsInput, repaint)

HWND hWnd; The handle of the window to be accessed

LPBYTE file; picture file name. This function supports BMP, WMF, PNG, and
JPEG picture file formats. You can set this parameter to NULL
to invoke a dialog box to accept user parameters.

In addition, Sub Systems offers free support for GIF and TIFF
formats when you have a Unisys license to used these formats.

int align; Picture alignment: ALIGN_TOP, ALIGN_BOT,
ALIGN_MIDDLE, HALIGN_LEFT, HALIGN_RIGHT. Use 0 for
default.

BOOL IsMap; Set to TRUE to transmit mouse click location on the picture.
(default is FALSE).

BOOL InInput; Set to TRUE to create a 'Send' input field within the current
form. (default is FALSE).

BOOL repaint; Repaint the screen after this operation.

Return Value: The function returns a non-zero picture id when successful. Otherwise it
return zero.

See Also:
HtsInsertLink

HtsInsertRule

Insert a horizontal rule.

BOOL HtsInsertRule (hWnd, repaint)

HWND hWnd; The handle of the window to be accessed

BOOL repaint; Repaint the screen after this operation.

Return Value: The function returns a TRUE value when successful.

See Also:
HtsEditRule

HtsInsertSelectField

Insert a selection box into form.

BOOL HtsInsertSelectField(hWnd, name, MultiSelect, NumLines, repaint)

HWND hWnd; The handle of the window to be accessed

LPBYTE name; The name of the text field (null terminated string). Set this
parameter to NULL to prompt the user for the parameters.

BOOL MultiSelect; Set to TRUE to enable the selection of multiple items inside the
list box.

int NumLines; Number of visible lines in the selection box. To create a
combo-box, set this field to 1. To create a list box, set this
parameter to a value greater than one.

BOOL repaint; Repaint the screen after this operation.

Description: This function creates an empty selection box. You can use the
HtsAddSelectionItem function to add items in the selection box.

Return Value: If successful, the function returns the control id of the new field. Otherwise
it returns 0. You can use the Windows SDK function GetDlgItem to translate the control id
into the window handle of the control.

See Also:
HtsAddSelectionItem
HtsDelSelectionItem
HtsInsertTextField

HtsInsertTextField

Insert a text field into form.

BOOL HtsInsertTextField(hWnd, name, type, NumCols, MaxCols, NumRows, InitText,
repaint)

HWND hWnd; The handle of the window to be accessed

LPBYTE name; The name of the text field (null terminated string). Set this
parameter to NULL to prompt the user for the parameters.

int type; The field type can be one of the following values:

FTYPE_TEXT: Text line field

FTYPE_TEXTAREA: Text area field

FTYPE_PASSWORD: Password field.

int NumCols; The width of the field in terms of number of characters.

int MaxCols; Maximum number of characters allowed in the field.

int NumRows; For a text area field (FTYPE_TEXTAREA), this parameter
indicates the number of lines in the text box.

LPBYTE InitText; Initialize text string. This parameter can be set to NULL.

BOOL repaint; Repaint the screen after this operation.

Return Value: If successful, the function returns the control id of the new field. Otherwise
it returns 0. You can use the Windows SDK function GetDlgItem to translate the control id
into the window handle of the control.

See Also:
HtsInsertButtonField

HtsInternetGet

Download a file from internet.

BOOL HtsInternetGet(hWnd, url, OutFile, GetFromCache)

HWND hWnd; The handle of the window to be accessed

LPBYTE url; The url of the internet file

LPBYTE OutFile; The name of the local file to save the internet file as.

BOOL GetFromCache; Set to FALSE to always download the file. Set to TRUE to copy
the file from cache, if available.

Return Value: This function returns TRUE when successful. Otherwise, it returns a
FALSE value.

HtsInViewMode

Check if the current document is being displayed in the View Mode.

BOOL HtsInViewMode(hWnd)

HWND hWnd; The handle of the window to be accessed

Return Value: This function returns TRUE if the current document is being displayed in
the View Mode.

HtsIsHttpFile

Check if the given file is an internet file.

BOOL HtsIsHttpFIle(FileName)

LPBYTE FIleName; The file path to check

Return Value: This function returns TRUE if the given file path resides on the internet.

See Also:
HtsIsLoaclFile
HtsSetDownloadDir
HtsInternetGet

HtsIsLoaclFile

Check if the given file is a local file.

BOOL HtsIsLocalFIle(FileName)

LPBYTE FIleName; The file path to check

Return Value: This function returns TRUE if the given file path resides on a local disk.

See Also:

HtsIsHttpFile
HtsSetDownloadDir
HtsInternetGet

HtsLoadControl

Load the Hts DLL:

BOOL HtsLoadControl()

Description: This function is used to load the Hts DLL. This function ensures that the Hts
DLL is actually linked with your application.

Return Value: This function always returns a TRUE value.

HtsLparam2String

Copy text from a long parameter (lParam) to a string variable

BOOL HtsLparam2String(lParam, string)

long lParam; Source pointer in the long form.

LPBYTE string; Destination pointer

Description: This function is used by a Visual Basic application to copy the text from a
long parameter to a string variable.

Return Value: This function always returns a TRUE value.

Example:

 sub html(message as Integer, wParam as Integer,

 lParam as Long)

 Dim text as string

 text=space$(300) ' allocate 100 bytes for

 the text variable

 HtslParam2String(lParam,text) ' copy the text

 from lParam to text

 text="new text"

 HtsString2Lparam(text,lParam) ' return the new string

 end sub

See Also:
HtsString2Lparam

HtsMenuEnable

Return the enable/disable status of a menu item.

BOOL HtsMenuEnable(hWnd, MenuId)

HWND hWnd; The handle of the window to be accessed

int MenuId; The menu id to return the status. Please refer to the
'HtsCommand' function for a list of available menu ids.

Description: If your application uses one of the predefined menu ids, you can call this
function to check whether you need to enable or disable the menu item.

Return Value: This function returns TRUE if the menu item should be enabled, otherwise
it returns FALSE.

See Also:
HtsMenuSelect
HtsCommand

HtsMenuSelect

Return the 'check' status of a menu item.

BOOL HtsMenuSelect(hWnd, MenuId)

HWND hWnd; The handle of the window to be accessed

int MenuId; The menu id to return the status. Please refer to the
'HtsCommand' function for a list of available menu ids.

Description: If your application uses one of the predefined menu ids, you can call this
function to test whether you need to check the menu item.

Return Value: This function returns TRUE if the menu item should be checked,
otherwise it returns FALSE.

See Also:
HtsMenuEnable
HtsCommand

HtsModified

Check if the current document is modified.

BOOL HtsModified(hWnd)

HWND hWnd; The handle of the window to be accessed

Return Value: This function returns TRUE if the current document is modified. If the
current document contains embedded frames, then this function returns TRUE if the text
in any of the embedded frames is modified.

HtsParaNormal

Turn off the paragraph properties.

BOOL HtsParaNormal(hWnd, repaint)

HWND hWnd; The handle of the window to be accessed

BOOL repaint; Repaint the screen after this operation.

Description: This function turns off the following paragraph attributes: header, lists,
blockquote, address, and preformatted text.

Return Value: This function returns a TRUE value when successful.

See Also:
HtsSetListEx
HtsSetMiscParaType

HtsPositionName

Position at a given tag name within the current document.

BOOL HtsPositionName(hWnd, tag)

HWND hWnd; The handle of the window to be accessed

LPBYTE tag; The tag name to position at

Description: This function is used to position at a given tag within the current document.
The tag name is specified in an HTML document using the <A> element with a 'name='
attribute.

If the tag is located, the line containing the tag is displayed at the top of the window.

Return Value: This function returns TRUE when successful.

HtsRead

Read an HTML document or buffer into the specified TER window.

BOOL HtsRead(hWnd, InputType, FileName, hBuf, BufLen, TagName)

HWND hWnd; The handle of the window to be accessed

int InputType; Input type:

HTML_FILE: Specify the input file name using the FileName
argument.

HTML_BUF: Specify the input buffer using the hBuf and
BufLen arguments.

LPBYTE FileName; Input file name. The file name may be prefixed by a
subdirectory path. Set to NULL when the 'InputType' argument
is HTML_BUF.

HGLOBAL hBuf; Global memory handle to a buffer containing HTML text. Set to
NULL when the 'InputType' argument is HTML_FILE.

long BufLen; The size of the text specified in the 'hBuf' parameter. Set to
NULL when the 'InputType' argument is HTML_FILE.

LPBYTE TagName; The tag name to position at. A tag name is indicated in an
HTML file using the <A> markup element with a 'name='
attribute.

Specify NULL to position at the top of the file.

Description: This function is used to read a new document into the specified TER
window. The data may be contained in a disk file or in a memory buffer. The data must be
in the HTML format.

This function sends HTS_PICTURE message to the parent window whenever it
encounters a picture element in the document.

Return Value: This function returns a TRUE value when successful.

Example:

 // read an HTML disk file

 ReadHts(hWnd,HTML_FILE, "myfile.htm",NULL,0,NULL);

 // read an HTML disk file and position at a tag called

 'begin here'.

 ReadHts(hWnd,HTML_FILE, "myfile.htm",NULL, 0, "begin here");

 // read a memory buffer containing HTML text

 HGLOBAL hBuf;

 long BufLen;

 ReadHts(hWnd,HTML_BUF,NULL,hBuf,BufLen,NULL);

HtsReformat

Save the document to a temporary buffer and reload.

BOOL HtsReformat(hWnd)

HWND hWnd; The handle of the window to be accessed

Description: This function is useful for redisplaying a document.

Return Value: This function returns TRUE when successful.

HtsSave

Save the current HTML document to a file or to a buffer.

BOOL HtsSave(hWnd, OutputTo, FileName, hBuf, BufLen)

HWND hWnd; The handle of the window to be accessed

int OutputTo; Output to:

HTML_FILE: Specify the output file name using the
FileName argument.

HTML_BUF: The output buffer is returned via the hBuf
and BufferLen parameters.

LPBYTE FileName; Output file name. The file name may be prefixed by a
subdirectory path. Set to NULL when the 'OutputTo' argument
is HTML_BUF.

HGLOBAL far *hBuf; When saving to a buffer, this pointer receives the global
memory handle of the buffer containing the text.

LPLONG BufLen; When saving to a buffer, this pointer receives the buffer length.

Description: This function is meant to be called from your application's save menu
procedure to save the current document.

Return Value: This function returns a TRUE value when successful.

See Also:
HtsWrite
HtsClose

HtsSetActiveWnd

Set Active Window handle.

BOOL HtsSetActiveWnd(hWnd)

HWND hWnd; The handle of the window to be accessed

Description: In a document containing embedded frames, the active window is
automatically selected when the user click inside a frame window. This function can be
used to override the current active frame window.

Return Value: This function returns TRUE if successful.

See Also:
HtsGetActiveWnd2

HtsSetBkColor

Set the background color for a new control.

BOOL HtsSetBkColor(BkColor)

COLORREF BkColor; Background color

Description: This function is used to set a non-default background color for a control.
This function must be called before the HtsInitailize function.

Return Value: This function always returns TRUE.

See Also:
HtsSetNewBkColor

HtsSetBkPict

Set the background picture file.

BOOL HtsSetBkPict(hWnd, PictFile)

HWND hWnd; The handle of the window to be accessed

LPBYTE PictFile; Name of the picture file. Set to NULL to remove existing
background picture.

Return Value: This function returns TRUE when successful.

See Also:
HtsSetNewBkColor

HtsSetDefaultTarget

Set the default target the frame window.

BOOL HtsSetFrameName(hWnd, target)

HWND hWnd; The handle of the window to be accessed. This window handle
is used as given without any modification described in the
beginning of this chapter.

LPBYTE target; New default target.

Return Value: This function returns a TRUE value when successful.

See Also:
HtsSetFrameName

HtsSetDocTitle

Set the document title.

BOOL HtsSetTitle(hWnd, title)

HWND hWnd; The handle of the window to be accessed

LPBYTE title; docment title. Set to "" to remove the existing title. The
document title is saved to the HTML file using the 'title' tag.

Return Value: This function returns a TRUE value when successful.

HtsSetDownloadDir

Set the directory path to download and cache internet files.

BOOL HtsSetDownloadDir(DirPath)

LPBYTE DirPath; The directory path to save the internet files

Return Value: This function returns TRUE when successful, otherwise it returns a
FALSE value.

See Also:
HtsIsLoaclFile
HtsIsHttpFile
HtsInternetGet

HtsSetFlags

Set the operating flags.

DWORD HtsSetFlags(hWnd, SetReset, flags)

HWND hWnd; The handle of the window to be accessed

BOOL SetReset; TRUE to set the given flags, FALSE to reset them.

DWORD flags; Flags to set or reset. Current the following flags are available:

HFLAG_OUTPUT_DEF_FONT: Write the default font typeface to the
output file.

HFLAG_OUTPUT_DEF_FONTSIZE: Write the default font size to the output
file.

HFLAG_OUTPUT_DEF_FONTCOLOR: Writethe default font color to the output file

HFLAG_NO_TAG_FONT: Do not write the default font information for
the tags.

HFLAG_SAVE_CELL_WIDTH: Write the default cell width to the output
file.

HFLAG_NO_PICT_PATH: Do not save the picture path in the output
file.

HFLAG_NO_FORM_SHADING: Do not shade the form area in the edit
mode.

HFLAG_NO_TOGGLE_MSG: Do not show the warning message when
toggling from the edit to the view mode.

HFLAG_FIXED_VSCROLL: Do not automatically hide or display the
vertical scroll bar.

HFLAG_SAVE_PICT_AS_WMF: During RTF to HTML conversion save the
embedded pictures as metafiles. By
default, the embedded files are stored in
the PNG format.

HFLAG_NO_SCRIPT: Suppress script processing.

HFLAG_ROUND_BULLET: Use the round bullet for every list level.

HFLAG_NO_DIV: Use the <p> tag instead of the <div> tag
for HTML output.

HFLAG_NO_SPAN_TAG: Do not output the tag.

HFLAG_WRITE_LINK_STYLE: Write the link style and color to the output
file.

HFLAG_NO_INTERNET: Do not access the internet files.

HFLAG_NO_HEAD: Do not write the 'head' section

HFLAG_NO_BODY: Do not write the 'body' tag

HFLAG_NO_FONT: Do not write the 'font' tag

HFLAG_NO_STYLE: Do not write the character style tags

HFLAG_NO_LIST_MARGIN: Do not write the margin information for the
"" tag.

HFLAG_NO_XLATE_LINK: Do not translate % characters

Return Value: This function returns the current flag values.

HtsSetFlags2

Set the operating flags.

DWORD HtsSetFlags2(hWnd, SetReset, flags)

HWND hWnd; The handle of the window to be accessed

BOOL SetReset; TRUE to set the given flags, FALSE to reset them.

DWORD flags; Flags to set or reset. Current the following flags are available:

HFLAG2_DOCTYPE: Generate DOCTYPE information in the
document header.

Return Value: This function returns the current flag values.

HtsSetFont

Set the new font information for an HTML style element.

BOOL HtsSetFont(hWnd, font, typeface, PointSize, style, TextColor, TextBkColor,
repaint)

HWND hWnd; The handle of the window to be accessed

int font; Font id for an HTML style element. Refer to the 'HtsGetFont'
API for a list of the font ids.

LPBYTE typeface; The pointer to receive the font typeface. This buffer should
be able to hold upto 32 characters.

int PointSize; The new point size for the font.

UINT style; The new style bits for the font:

BOLD: Bold

ITALIC: Italic

ULINE: Underline

STRIKE Strikethrough

COLORREF TextColor; The new text foreground color.

COLORREF TextBkColor; The new text background color.

BOOL repaint; TRUE to refresh the window after applying the new text
attributes.

Description: This function is used to set the new font specification for an HTML style
element. The new font attributes are specified using the function parameters. If you wish
to retain the old value for a parameter, use the 'HtsGetFont' function to retrieve the
existing value, and then use the 'HtsSetFont' to specify the existing values for the
parameters that you do not wish to change.

Return Value: This function returns a TRUE value when successful.

Example:

 BYTE typeface[32];

 int PointSize;

 UINT style;

 COLORREF TextColor, TextBkColor;

 HtsGetFont(hWnd, FONT_H2, typeface, &PointSize, &style,

 &TextColor, &TextBkColor);

 HtsSetFont(hWnd,FONT_H2, "Arial", PointSize, style, 0xFF,

 TextBkColor);

 // The above example modifies the typeface and text color

 for the 'Header 2' HMTL style element. The PointSize,

 style and text background are left unchanged.

See Also:
HtsSetFontDlg
HtsGetFont
HtsSetLinkInfo

HtsSetFontDlg

Allow the user to edit the font information for an HTML style element using a
dialog box.

BOOL HtsSetFontDlg(hWnd, font)

HWND hWnd; The handle of the window to be accessed

int font; Font id for an HTML style element. Refer to the 'HtsGetFont'
API for a list of the font ids. You can set this parameters to -1 to
let the user select an HTML style element from a list of style
elements.

Description: This function allows the user to modify the font information for a desired
HTML style element.

Return Value: This function returns a TRUE value when successful.

Example:

 HtsSetFontDlg(hWnd, -1);

See Also:
HtsGetFont
HtsSetLinkInfo

HtsSetFontSize

Set the font size.

BOOL HtsSetFontSize(hWnd, size, relative, repaint)

HWND hWnd; The handle of the window to be accessed

int size; If the 'relative' parameter is TRUE, the size must be between -7
and 7. If the 'relative' parameter is FALSE, the size must be
between 1 and 7. To invoke a user dialog box, set the size to 0.

BOOL relative; Set to TRUE to change the font size relatively.

BOOL repaint; TRUE to refresh the window after this operation.

Description: The 'size' parameter is combined with the 'base font size' for the document
to derive a number between 1 and 7. The higher number indicates bigger fonts.

Return Value: This function returns a TRUE value when successful.

See Also:
HtsSetFontDlg
HtsGetFont
HtsSetLinkInfo
HtsSetFontSizeTbl

HtsSetFontSizeTbl

Set the font size table.

BOOL HtsSetFontSizeTbl(size1, size2, size3, size4, size5, size6 size7)

int size1; The pointsize for HTML font size #1

int size2; The pointsize for HTML font size #2

int size3; The pointsize for HTML font size #3

int size4; The pointsize for HTML font size #4

int size5; The pointsize for HTML font size #5

int size6; The pointsize for HTML font size #6

int size7; The pointsize for HTML font size #7

Description: This function overrides the default point sizes for the HTML font sizes. If
you wish to override the default values, call this function before any editor window is
opened.

Return Value: This function returns a TRUE value when successful.

See Also:
HtsSetFontSize

HtsSetForm

Set the Form attribute for a paragraph.

BOOL HtsSetForm(hWnd, set, repaint)

HWND hWnd; The handle of the window to be accessed

BOOL apply; Set to TRUE to turn a paragraph into a form. Set to FALSE to
reset this attribute. The input fields can be inserted only within
form paragraph.

BOOL repaint; Repaint the screen after this operation.

Return Value: This function returns a TRUE value when successful.

See Also:
HtsEditFormId
HtsSetFormId

HtsSetFormId

Set a form id for a form.

BOOL HtsSetFormId(hWnd, id)

HWND hWnd; The handle of the window to be accessed

BOOL id; Set a form id for the current form.

Description: Before this function is called, the cursor must be located on a form
paragraph. The current form must also have at least one input field to be able to
associate a form id with it.

Return Value: This function returns a TRUE value when successful.

See Also: HtsEditFormId, HtsSetForm

See Also:
HtsEditFormId

HtsSetFrameName

Set a new name for a frame window.

BOOL HtsSetFrameName(hWnd, name)

HWND hWnd; The handle of the window to be accessed. This window handle
is used as given without any modification described in the
beginning of this chapter.

LPBYTE name; New frame name.

Return Value: This function returns a TRUE value when successful.

See Also:
HtsGetFrameName

HtsSetHeader

Apply the header property.

BOOL HtsSetHeader(hWnd, level, repaint)

HWND hWnd; The handle of the window to be accessed

int level; Header level (1 to 7)

BOOL repaint; Repaint the screen after this operation.

Description: This function turns the current paragraph into a header paragraph of the
given level. Call this function with the 'level' argument set to 0 to turn off the header
property.

Return Value: This function returns a TRUE value when successful.

See Also:
HtsParaNormal
HtsSetListEx
HtsSetMiscParaType

HtsSetLinkInfo

Set new text color and style for the link text.

BOOL HtsSetLinkInfo(hWnd, style, TextColor)

HWND hWnd; The handle of the window to be accessed

UINT style; The new style bits for the font:

BOLD: Bold

ITALIC: Italic

ULINE: Underline

STRIKE Strikethrough

COLORREF TextColor; The new link foreground color.

Description: This function is used to set new text style and color for the link text. If you
wish to edit only one of the parameter, you can use the 'HtsGetLinkInfo' API to get the
existing information. Specify the existing value for the parameter that you do not wish to
modify.

Return Value: This function returns a TRUE value when successful.

Example:

 UINT style;

 COLORREF TextColor;

 HtsGetLinkInfo(hWnd, &style, &TextColor);

 HtsSetLinkInfo(hWnd, style, 0xFF);

 // The above example modifies the color for the link text.

 The style is left unchanged.

See Also:
HtsGetLinkInfo

HtsSetLinkInfoDlg
HtsSetFont

HtsSetLinkInfoDlg

Allow the user to edit the color and style for the link text.

BOOL HtsSetLinkInfoDlg(hWnd)

HWND hWnd; The handle of the window to be accessed

Description: This function allows the user to modify the color and style for the link text.

Return Value: This function returns a TRUE value when successful.

Example:

 HtsSetLinkInfoDlg(hWnd);

See Also:
HtsSetLinkInfo
HtsSetFontDlg

HtsSetListEx

Apply the paragraph list property.

BOOL HtsSetList(hWnd, type, level, DtDd, repaint)

BOOL HtsSetListEx(hWnd, type, level, DtDd, NbrSymbol, repaint)

This function is now deprecated. Please use the functions available in TE Edit
Control to use the List functionality.

HWND hWnd; The handle of the window to be accessed

int type; The list type can be one of the following:

PARA_LIST_OL: Ordered list

PARA_LIST_UL: Unordered list

PARA_LIST_DL: Definition list

Also, you can set the 'type' to 0 to leave it unchanged.

int level; List level (1 to 7). Also, you can set the 'level' to 0 to leave it

unchanged.

int DtDd; Set to TERM_DT to indicate the definition term, set to
TERM_DD to indicate the definition data, set to 0 to leave it
unchanged. This argument is used only when the 'type' is set to
PARA_LIST_DL.

int NbrSymbol; For an 'ordered' list, this parameters specifies the type of
number symbol to use:

NBR_DEC: Decimal numbering

NBR_UPR_ALPHA: Number using uppercase alphabetic
characters.

NBR_LWR_ALPHA: Number using lowercase alphabetic
characters.

The above constants are defined in ter.h, ter.bas or ter_prot.pas
files.

BOOL repaint; Repaint the screen after this operation.

Description: If both the 'type' and the 'level' arguments are set to 0, then this function will
toggle the 'new item' property of the current list item. A new list item is bulleted or
numbered, whereas a paragraph without this property indicates a next paragraph of the
current list item.

Please note that the numbering for the ordered list is not available in the edit mode.

Return Value: This function returns a TRUE value when successful.

See Also:
HtsParaNormal
HtsSetHeader
HtsSetMiscParaType

HtsSetMiscCharType

Set Example, Keyboard, Sample, Variable, Typewriter, TR or HV styles.

BOOL HtsSetMiscCharType(hWnd, type, repaint)

HWND hWnd; The handle of the window to be accessed

int type; The type can be one of the following:

FONT_EXAMPLE: Example

FONT_KBD: Keyboard

FONT_SAMP: Sample

FONT_VAR: Variable

FONT_TT: Typewriter

FONT_TR: Times Roman

FONT_HV: Helvetica

You can also set the 'type' argument to 0 to reset all
miscellaneous character styles.

BOOL repaint; Repaint the screen after this operation.

HtsSetMiscParaType

Set Blockquote, Address, or Preformatted text attributes.

BOOL HtsSetMiscParaType(hWnd, type, repaint)

HWND hWnd; The handle of the window to be accessed

int type; The type can be one of the following:

PARA_BLOCKQUOTE

PARA_ADDRESS

PARA_PRE

BOOL repaint; Repaint the screen after this operation.

Return Value: This function returns a TRUE value when successful.

See Also:
HtsParaNormal

HtsSetNewBkColor

Set the background color for the current file.

BOOL HtsSetNewBkColor(hWnd, color, set)

HWND hWnd; The handle of the window to be accessed

COLORREF color; New background color

BOOL set; TRUE to set the specified color, FALSE to remove any existing
background color.

Return Value: This function returns TRUE when successful.

See Also:
HtsSetBkPict
HtsSetNewTextColor

HtsSetNewTextColor

Set the foreground color for the current file.

BOOL HtsSetNewTextColor(hWnd, color)

HWND hWnd; The handle of the window to be accessed

COLORREF color; New text foreground color. When the document is saved, this
color is written out in the "body" tag.

Return Value: This function returns TRUE when successful.

See Also:
HtsSetNewBkColor

HtsSetParaSpace

Toggle space before and after the paragraph.

BOOL HtsSetParaSpace(hWnd, SetSpace, repaint)

HWND hWnd; The handle of the window to be accessed

BOOL SetSpace; Set to TRUE to create space before and after the paragraph.
Set to FALSE to remove such space.

BOOL repaint; Repaint the screen after this operation.

Return Value: This function returns a TRUE value when successful.

HtsSetPicture

Replace a picture with a new picture.

BOOL HtsSetPicture(hWnd, PictId, PictType, PictFile)

HWND hWnd; The handle of the window to be accessed

int PictId; The picture id of the picture to replace. Your application is
informed of the picture for a picture using the HTS_PICT_ID
message.

int PictType; Picture type of the new picture file. Please refer to the
description of HTS_PICTURE message (chapter: Message
Communication) for a list of valid picture types.

LPSTR PictFile; The pathname of the new picture file.

Description: This function is useful for replacing a placeholder picture with the real
picture in a document.

During the initial document load time, your application receives the HTS_PICTURE
message to resolve the pathname of a picture in the document. When such a picture is
located on a remote network, your application might return a pathname of a local
placeholder picture file in response to the HTS_PICTURE message. The HTS_PICTURE
message is followed by the HTS_PICT_ID message, which informs your application
about the picture id of the preceding picture. After the document is completely loaded, the
control displays the document with the placeholder pictures. Your application can then
retrieve the real picture from the remote source. The original placeholder picture can then
be replaced by the real picture using this function.

Return Value: This function returns a TRUE value when successful.

Example:

 HtsSetPicture(hWnd, PictId, PICT_BMP, "new.bmp");

See Also:
HtsSetBkPict
HtsSetNewTextColor

HtsSetPictUseMap

Set the 'usemap' value for a picture.

BOOL HtsSetPictUseMap(hWnd, PictId, UseMap)

HWND hWnd; The handle of the window to be accessed

int PictId; The picture id of the picture.

LPBYTE UseMap; UseMap value string.

Return Value: This function returns a TRUE value when successful.

See Also:
HtsInsertPicture

HtsSetPictFileBase

Set the the base name for the picture file during RTF to HTML conversion.

BOOL HtsSetPictFileBase(FileBase)

HWND hWnd; The handle of the window to be accessed

LPBYTE FileBase; File name base for the picture files. The default file name base
is "HTS_".

Return Value: This function returns a TRUE value when successful.

HtsSetReadOnly

Set or reset the read only status for the current document.

BOOL HtsSetReadOnly(hWnd)

HWND hWnd; The handle of the window to be accessed

Description: If the current document contains embedded frames, then this function
applies the new read-only status to all frame windows in the document.

Return Value: This function returns the previous read-only status for the document.

HtsSetTableWidth

Set the current table width.

BOOL HtsSetTableWidth(hWnd, width, repaint)

HWND hWnd; The handle of the window to be accessed

int width; The table width in pixels. You can also set a percentage width
by specifying a negative value, i.e. set 'width' to -100 to specify
100 percent width.

BOOL repaint; TRUE to repaint the screen after this operation.

Return Value: This function returns a TRUE value when successful.

HtsSetTarget

Set the target frame for the hyperlink jump.

BOOL HtsSetTarget(hWnd, target)

HWND hWnd; The handle of the window to be accessed

LPBYTE target; target frame name.

Description: When the user clicks on a hyperlink text within a framed document, the
editor automatically sets the target frame for the hyperlink jump. This target remains
effective until the next HtsRead function is called to load the new document. In a typical
implementation, your application will call the HtsClearWindow and HtsRead functions
when it receives the HTS_LINK message. If your implementation does not call the
HtsRead function, then it must call the HtsSetTarget function to reset the target as
follows:

 HtsSetTarget(hWnd,"");

This function can also be used to override the target frame as specified in the 'href' tag
for the current hyperlink.

Return Value: This function returns a TRUE value when successful.

See Also:
HtsGetTarget

HtsSetUserTag

Set the text data for a user tag.

BOOL HtsGetUserTag(hWnd, TagId, TagText)

HWND hWnd; The handle of the window to be accessed

int TagId; Tag id for the user tag to set

LPBYTE TagText; The tag text. Set this parameter to NULL or "" to delete the
user tag.

Description: This function sets the text data associated with the given user tag id. HTML
add-on saves the user tag id and the associated tag text in the 'head' section of the
HTML file using the 'meta' tag:

 <meta UserTagId:nn UserTagData="tag data">

Return Value: This function returns TRUE when successful.

See Also:
HtsGetUserTag

HtsString2Lparam

Copy text from a string variable to a long parameter (lParam)

BOOL HtsString2Lparam(string,lParam)

LPBYTE string; Source text pointer

long lParam; Destination pointer in the long form.

Description: This function is used by a Visual Basic application to copy the text from a
string variable to a long parameter.

Return Value: This function always returns a TRUE value.

Example:

 sub html(message as Integer,wParam as Integer,lParam as Long)

 Dim text as string

 text=space$(300) ' allocate 100 bytes for the text

 variable

 HtslParam2String(lParam,text) ' copy the text from

 lParam to text

 text="new text"

 HtsString2Lparam(text,lParam) ' return the new string

 end sub

See Also:
HtsLparam2String

HtsUpdateLinkEx

Update the 'href' and 'name' parameters for the link at the cursor position.

BOOL HtsUpdateLink(hWnd, href, name, repaint)

BOOL HtsUpdateLinkEx(hWnd, href, name, target, repaint)

HWND hWnd; The handle of the window to be accessed

LPBYTE href; The new 'href' parameter.

LPBYTE name; The new 'name' parameter.

LPBYTE target; The new frame target for the link.

BOOL repaint; TRUE to repaint the screen after this operation.

Return Value: This function returns a TRUE value when successful.

See Also:
HtsGetLinkDataEx

HtsWrite

Write the current HTML document to a file or to a buffer.

BOOL HtsWrite(hWnd, OutputTo, FileName, hBuf, BufLen,WriteSelection)

HWND hWnd; The handle of the window to be accessed

int OutputTo; Output to:

HTML_FILE: Specify the output file name using the
FileName argument.

HTML_FILE_DLG: Invokes a dialog box which allows the
user to select a file name to save.

HTML_BUF: The output buffer is returned via the
hBuf and BufferLen parameters.

LPBYTE FileName; Output file name. The file name may be prefixed by a
subdirectory path. Set to NULL when the 'OutputTo' argument
is HTML_BUF.

HGLOBAL far *hBuf; When saving to a buffer, this pointer receives the global
memory handle of the buffer containing the text.

LPLONG BufLen; When saving to a buffer, this pointer receives the buffer length.

BOOL WriteSelection; Set this flag to TRUE if you wish to save only the selected text.

Description: This function is used to write the current document to a file or a buffer.

Return Value: This function returns a TRUE value when successful.

See Also:
HtsSave

TvbSetEventResult

Return a result in an event handler.

BOOL TvbSetEventResult(result)

long result; result to return to the event handler

Description: This function is used by a Visual Basic or Delphi application to return the
result to an event handler.

Return Value: This function always returns a TRUE value.

Example:

 sub html(message as Integer,wParam as Integer,lParam as long)

 Dim PictType as Integer

 if (message = HTML_PICTURE) then

 ...

 ...

 ...

 PictType = PICT_BMP;

 TvbSetEventResult(PictType); // return picture type

 endif

 end sub

Viewer/Editor Modes

The selection of viewer or editor mode is controlled by the read-only status of the TER
control. To invoke the HTML viewer, turn on the read-only mode before reading the
document. You can specify the read-only mode either during the creation of the control or
by using the TerSetReadOnly API (exported by the TER control). If the read-only mode is
not selected, the document is opened in the edit mode. In the edit mode, you can access
additional APIs to edit the document.

The appearance of the document in the edit mode have these variations from the viewer
mode:

The form text is displayed in a darker shade. This helps the user visually to
identify the beginning and end of the form.
The numbering for the ordered list is disabled. Instead of a list item number, a
bullet is displayed.
During the process of editing, the paragraph spacing and the table size may
change. At any time to view the actual formatting, select the reformat option (or
HtsReformat API) from the menu.

Message Communication

The Hts dll sends the following messages to the parent window of the editor:

HTS_BASE:

The Hts dll sends this message when it encounters the 'base' HTML marker.

wParam The window handle of the editor.

lParam The pointer to the base URL string.

Return Value: The dll ignores the return value from this message.

HTS_BK_PICT:

The Hts dll sends this message when it encounters the 'body' tag with background picture
specification. This message follows immediately before the HTS_PICTURE message
which is sent to resolve the picture file name for the background picture..

wParam The window handle of the editor.

lParam This parameter is not used.

Return Value: The dll ignores the return value from this message.

HTS_FORM:

The Hts dll fires this message when the user submits a form by clicking on a 'submit'
button, or form image, or a single 'one line text' box.

wParam: The window handle of the editor.

lParam: The form id of the form being submitted.

Application Response: Upon receiving this message, your application will typically retrieve
the form information by using the HtsGetFormInfo function. This function returns the total
number of fields in the form. Your application can then use the HtsGetFieldData function
to retrieve the user entered data for each field in the form.

Return Value: The dll ignores the return value from this message.

HTS_FRAME_FILE:

The dll may send this message to the parent window before reading a document into a
frame of a frame-set document.

wParam The window handle of the editor.

lParam The pointer to the file URL.

Application Response: Your application will resolve the URL into a MSDOS file path
name. It may need to retrieve the file from a remote location or may have it available in the
local machine. In either case, your application writes the file path name in the pointer
provided by the lParam parameter. The file pathname must be in the MSDOS format. If
this message is not processed, then the dll attempts to read the file specified by the
original URL.

Return Value: Not used.

HTS_FRAME_NAME:

The dll may send this message to the parent window before reading a document into a
frame of a frame-set document.

wParam The window handle of the editor.

lParam The pointer to the frame name.

Application Response: This message is sent before sending the HTS_FRAME_FILE
message and it denotes the frame into which the next frame file is being read. This
message is for information only. Once the entire frame set is loaded, your application can
use this frame name with the HtsGetActiveWnd2 function to get the window handle of the
frame.

Return Value: Not used.

HTS_LINK:

The Hts dll posts this message (in the viewer mode only) when it needs your application to
load a new document or respond to a click at a particular location on a hot spot image.

wParam The window handle of the editor.

lParam The pointer to the destination path. The destination path may be
a file name in the current directory or a complete URL. The path
name may also be suffixed with either the destination tag name
or a mouse click location on a hot spot image.

The tag name is delimited from the URL string using '#'
character. Example:

 //localhost/c:\mydir\myfile.htm#mytag

When a hot spot image has an attribute of 'ISMAP', the URL is
suffixed with a mouse location string in the format of ?X,Y.
Example:

 //localhost/c:\mydir\myfile.htm?10,15

In the above example the mouse click was record on x = 10 and
y=15 pixel position. The coordinates are relative to the top, left
corner of the picture.

Application Response: In response to this message your application will typically clear the
existing document from the window and read the new document specified by the URL
string. If a destination tag is specified, your application will position the document at the
specified tag. Your application can use the HtsClearWindow and HtsRead functions for
clearing the window and reading a new document. Your application may also interpret the
mouse location as desired.

Return Value: The dll ignores the return value from this message.

HTS_LINK_INFO:

This message is similar to HTS_LINK, except that this message is sent in the 'edit' mode.
This message is sent for information only.

HTS_INT_LINK:

This message is similar to HTS_LINK, except that this message is sent for an internal
jump. This message is sent only in the 'ReadOnly' mode. This message is send for
information only. The editor automatically performs internal jumps.

HTS_LINK_URL:

The Hts dll sends this message during the initial read process when it encounters an
anchor link. This message informs your application of the URL used for the link. Your
application does not need to respond to this message as the DLL sends the application

the HTS_LINK message when the user actually activates a link.

wParam The window handle of the editor.

lParam The pointer to the current anchor URL string.

Return Value: The dll ignores the return value from this message

HTS_PICT_ID:

The dll sends this message to the parent window when reading a new document into the
editor window. This message is followed immediately after the HTS_PICTURE message.
It informs your application about the picture id of the preceding picture.

wParam The window handle of the editor.

lParam The picture id of the preceding picture.

Application Response: Your application will typically ignore this message unless the
previous picture was a placeholder picture to be later replaced by a real picture. If the
previous picture was a placeholder, your application saves the picture id of that picture to
be later used for replacing the original placeholder picture. For more information, please
refer to the HtsSetPicture function.

Return Value: Ignored.

HTS_PICTURE:

The dll may send this message to the parent window when reading a new document into
the editor window. During the parsing process when the editor encounters an image, it
informs your application about the URL of the image.

wParam The window handle of the editor.

lParam The pointer to the image URL.

Application Response: Your application will resolve the URL into a MSDOS file path
name. It may need to retrieve the picture from a remote location or may have it available
in the local machine. In either case, your application writes the picture path name in the
pointer provided by the lParam parameter. The picture pathname must be in the MSDOS
format. Your application also returns an integer value designating the picture type:

PICT_NONE: Picture not available. The editor displays the alternate text string
in place of the picture.

PICT_BMP: Windows device independent bitmap format.

PICT_WMF: Windows placeable metafile format.

PICT_JPEG: Jpeg format.

PICT_PNG: Portable Network graphic format.

In addition, Sub Systems offers a free support for GIF (PICT_GIF) and TIFF (PICT_TIFF)
formats when you have a Unisys license to use thse formats.

Example: If the lParam was set to

 //localhost/c:\mydir\mypict.bmp

 your application will set lParam to c:\mydir\mypict.bmp:

 lstrcpy((LPSTR)lParam, "c:\mydir\mypict.bmp");

 and return PICT_BMP.

Return Value: Picture type as described above.

HTS_SAVE_PICTURE:

The dll may send this message to the parent window when saving a picture file
information. This message informs your application about the URL of the image and lets
you modify the url if you desire.

wParam The window handle of the editor.

lParam The pointer to the image URL. The modified picture URL can also
be passed using this pointer.

Return Value: Not used.

HTS_TITLE:

The editor sends this message when it encounters the 'title' control element in the HTML
document.

wParam The window handle of the editor.

lParam The pointer to the title string.

Application Response: Your application will typically display the title string as the window
caption. Example:

 SetWindowText((HWND)wParam,(LPSTR)lParam);

Return Value: The editor ignores any return value from this message.

Interaction Between Hts and TER DLLs

The Hts dll and the TER dll work together to make an HTML viewer control.

The TER dll performs the following tasks:

Display the text in a window.

Provide user interface for scrolling.
Capture mouse clicks on hyperlink areas and dispatch the link messages to the
Hts dll.

The Hts dll performs the following tasks:

Parse the HTML document and insert the text into the TER dll. The text is
inserted as protected text.
Translate the image formats not supported by the TER dll.
Respond to the mouse messages from the TER dll.

On initialization the Hts dll modifies the operating parameters for the TER dll. The
initialization of the TER dll consists of the following tasks.

The Hts dll requests the TER dll to reserve a block of global memory for the
internal use of the Hts dll. This memory is automatically freed up by the TER dll
before exiting.
Create fonts for each HMTL style elements.
Set the tab width, background color and link text style. The editor is also
programmed not to change color of the protected text, issue link message on
single mouse clicks and turn off caret display over protected text.
The Hts dll also registers a callback function with the TER dll to receive the
hyperlink message

.

Visual Basic Interface

The HTML Add-on can be used with the toc31.ocx (available for Win32 only) which is
included with TE Edit control. The Hts dll interacts with the TOC ocx by firing the 'HTML'
event. The Hts dll also interacts with the TER dll by calling the TER dll functions. You will
need the following dll and ocx files in your working directory:

ter29.dll TE Edit control main dll

hts26.dll HTML Add-on dll

toc31.ocx OCX interface for ter29.dll

Also, your application needs to include the following files in your project:

Hts.BAS Function declarations for the Hts dll

TER.BAS Function declarations for the TER dll

Please refer to the TE Edit control manual for the instructions to create a TER control in
your application.

The ReadOnly flag determines the viewer or editor session. Turn on the ReadOnly flag to
create an HTML viewer.

Loading the First Document: To load the first HTML document, call these two Hts
functions when loading the form:

 HtsInitialize

 HtsRead

Please refer to the Application Interface Functions for a detailed description of these
functions.

HTML Interface: The Hts dll interacts with your application using the 'Html' event. This
event is fired to pass the HTML messages to your application. It takes these 3
parameters:

 message as Long

 wParam as Long

 lParam as Long

These three parameters for each Hts message are described in the Message
Communication chapter. Your application needs to respond to these messages. The
package includes a Visual Basic demo program (DMO_OCX) which can be used as a
reference for writing your application response to these messages.

The HTML Add-on can be used with the toc31.ocx (available for Win32 only) which is
included with TE Edit control. The Hts dll interacts with the TOC ocx by firing the 'HTML'
event. The Hts dll also interacts with the TER dll by calling the TER dll functions. You will
need the following dll and ocx files in your working directory:

ter29.dll TE Edit control main dll

hts26.dll HTML Add-on dll

toc31.ocx OCX interface for ter29.dll

Also, your application needs to include the following files in your project:

Hts.BAS Function declarations for the Hts32 dll

TER.BAS Function declarations for the TER32 dll

Please refer to the TE Edit control manual for the instructions to create a TER control in
your application.

The ReadOnly flag determines the viewer or editor session. Turn on the ReadOnly flag to
create an HTML viewer.

Loading the First Document: To load the first HTML document, call these two Hts
functions when loading the form:

 HtsInitialize

 HtsRead

Please refer to the Application Interface Functions for a detailed description of these
functions.

HTML Interface: The Hts dll interacts with your application using the 'Html' event. This
event is fired to pass the HTML messages to your application. It takes these 3
parameters:

 message as Long

 wParam as Long

 lParam as Long

These three parameters for each Hts message are described in the Message
Communication chapter. Your application needs to respond to these messages. The
package includes a Visual Basic demo program (DMO_OCX) which can be used as a
reference for writing your application response to these messages.

Recompile the DLL

If you need to modify the DLL source code and recompile within the Visual C++
environment, follow these steps to create a Visual C++ project:

Files: Hts*.C, Hts.DEF and Hts.RC

Executable Type: Windows DLL

Alignment (Compiler Option): 1 Byte

Remaining parameters should be left at their default values.

	Software License Agreement
	Disclaimer
	General Overview
	Getting Started
	Files
	License Key
	Linking the Editor to Your Application
	Interfacing with the Hts DLL

	Application Interface functions
	HtsAddSelectionItem
	HtsClearWindow
	HtsClose
	HtsCommand
	HtsDelSelectionItem
	HtsEditFormId
	HtsEditRule
	HtsGetActiveWnd2
	HtsGetCurForm
	HtsGetFont
	HtsGetFontSize
	HtsGetFieldData
	HtsGetFormInfo
	HtsGetFrameName
	HtsGetLinkDataEx
	HtsGetLinkInfo
	HtsGetParaAttrib
	HtsGetTagData
	HtsGetTarget
	HtsGetTopWin
	HtsGetUserTag
	HtsInitialize
	HtsInsertButtonField
	HtsInsertLink
	HtsInsertPicture
	HtsInsertRule
	HtsInsertSelectField
	HtsInsertTextField
	HtsInternetGet
	HtsInViewMode
	HtsIsHttpFile
	HtsIsLoaclFile
	HtsLoadControl
	HtsLparam2String
	HtsMenuEnable
	HtsMenuSelect
	HtsModified
	HtsParaNormal
	HtsPositionName
	HtsRead
	HtsReformat
	HtsSave
	HtsSetActiveWnd
	HtsSetBkColor
	HtsSetBkPict
	HtsSetDefaultTarget
	HtsSetDocTitle
	HtsSetDownloadDir
	HtsSetFlags
	HtsSetFlags2
	HtsSetFont
	HtsSetFontDlg
	HtsSetFontSize
	HtsSetFontSizeTbl
	HtsSetForm
	HtsSetFormId
	HtsSetFrameName
	HtsSetHeader
	HtsSetLinkInfo
	HtsSetLinkInfoDlg
	HtsSetListEx
	HtsSetMiscCharType
	HtsSetMiscParaType
	HtsSetNewBkColor
	HtsSetNewTextColor
	HtsSetParaSpace
	HtsSetPicture
	HtsSetPictUseMap
	HtsSetPictFileBase
	HtsSetReadOnly
	HtsSetTableWidth
	HtsSetTarget
	HtsSetUserTag
	HtsString2Lparam
	HtsUpdateLinkEx
	HtsWrite
	TvbSetEventResult

	Viewer/Editor Modes
	Message Communication
	Interaction Between Hts and TER DLLs
	Visual Basic Interface
	Recompile the DLL

