
SpellTime

for Java

Version 5.0

Copyright (c) 2012-2024,

Sub Systems, Inc.

All Rights Reserved

3200 Maysilee Street

Austin, TX 78728

512-733-2525

Software License Agreement

The Software is protected by copyright laws and international copyright treaties, as well
as other intellectual property laws and treaties. The Software is licensed, not sold. This
LICENSE AGREEMENT grants you the following rights:

A. This product is licensed per developer basis. Each developer working with this
package needs to purchase a separate license.

B. The DESKTOP LICENSE allows for the desktop application development. Your
desktop application using this product can be distributed royalty-free. Each desktop
license allows one developer to use this product on up to two development computers. A
developer must purchase additional licenses to use the product on more than two
development computers.

C. The SERVER LICENSE allows for the server application development. The server
licenses must be purchased separately when using this product in a server application.
Additionally, the product is licensed per developer basis. Only an UNLIMITED SERVER
LICENSE allows for royalty-free distribution of your server applications using this
product.

D. ENTERPRISE LICENSE: The large corporations with revenue more than $50 million
and large government entities must purchase an Enterprise License. An Enterprise
license is also applicable if any target customer of your product using the Software have
revenue more than $500 million. Please contact us at info@subsystems.com for a quote
for an Enterprise License.

E. Your license rights under this LICENSE AGREEMENT are non-exclusive. All rights not
expressly granted herein are reserved by Licensor.

F. You may not sell, transfer or convey the software license to any third party without
Licensor's prior express written consent.

G. The license remains valid for 12 months after the issue date. The subsequent year
license renewal cost is 40 percent of the license acquisition cost.

H. The license remains valid for 12 months after the issue date. The subsequent year
license renewal cost is discounted by 20 percent from the license acquisition cost. The
license includes standard technical support, patches and new releases.

I. You may not disable, deactivate or remove any license enforcement mechanism used
by the software.

617.htm

This software is designed keeping the safety and the reliability concerns as the main
considerations. Every effort has been made to make the product reliable and error free.
However, Sub Systems, Inc. makes no warranties against any damage, direct or indirect,
resulting from the use of the software or the manual and can not be held responsible for
the same. The product is provided 'as is' without warranty of any kind, either expressed
or implied, including but not limited to the implied warranties of suitability for a particular
purpose. The buyer assumes the entire risk of any damage caused by this software. In
no event shall Sub Systems, Inc. be liable for damage of any kind, loss of data, loss of
profits, interruption of business or other financial losses arising directly or indirectly from
the use of this product. Any liability of Sub Systems will be exclusively limited to refund of
purchase price.

Sub Systems, Inc. offers a 30-day money back guarantee with the product.

General Overview

SpellTime allows you to incorporate a spell checker into your text based product. The
product comes with a set of java classes included in a signed jar file. SpellTime offers the
following features:

SpellTime incorporates two types of dictionaries. The main dictionary contains
more than 100,000 English words. This dictionary is compressed to occupy only
350 K bytes on the disk. The efficient spell checking routines decompress the
main dictionary data at the run time. The user dictionary allows your users to
enter new words into the dictionary during the spell checking session.
You can use dictionary utilities to create foreign language dictionaries using the
unicode character set.
The SpellTime routine can interface with your application at different levels. Your
application can call SpellTime to check a single word, or to check all words in a
buffer, or to check the entire text file.

SpellTime will show the incorrect word on the screen with a number of alternate
words to choose from. The user may also add the incorrect word to the user
dictionary, or ignore the incorrect word, or type in a replacement word. SpellTime
remembers a user action for an incorrect word, so that any subsequent
occurrence of the same word is automatically corrected. SpellTime allows your
application to highlight the incorrect word before showing the dialog box for
correction.

SpellTime routines are highly optimized.
You can create multiple speller sessions for each thread.
SpellTime includes an interface to TE Edit Control. This interface consists of a
module that can be linked with your program. This module can check the entire
file or just the highlighted parts. The module supports a line or character
highlighted block. This module eliminates any need of programming for
incorporating spell checking facility into your application.
The product comes with a set of Java classes included in a signed jar file.

Technical Overview

The SpellTime product consists of two components: a) a set of dictionaries, and b) a set
of Java classes to access the dictionaries.

The main dictionary contains more than 100,000 English words. The data for the main
dictionary is contained in a file called dict35.d. The index for the data is contained in
another file called dict35.i. The dictionary data is stored in a compressed format. The
data is decompressed selectively during the spell checking session. A subset of the main
dictionary data resides in a separate file called dict35.s. This file contains all words that
consist of one or two letters. This separation of small words from the larger ones allows
for enhanced optimization of the word look up algorithm.

The second type of dictionary is the user dictionary. The user can add a new word into
this dictionary during the spell checking session.

The user dictionary is shipped empty. The detail data formats of all the dictionaries are
described in a later chapter.

SpellTime offers a number of java methods to interface with the dictionary. The main
method is called SpellWord. This method is frequently called during a spell checking
session. The SpellWord method handles screen interactions, and word searches. This
method also manages a session database of incorrect words. This database is used to
supply automatic correction of repetitively occurring words. The SpellWord method calls
the SpellDict method to actually search the dictionary for a word. The SpellDict method
employs a highly optimized algorithm to deliver fast word look up. This method can also
deliver a set of alternative words for an incorrect word.

When the entire contents of a buffer needs to be checked, you can call the StParseLine
method repetitively to extract the individual words. The SpellWord method can then be
called to check the individual words.

Getting Started

Unzip stje.zip file into a separate folder:

Now use the jar program to unzip the SpellTime.jar in the demo folder:

jar -xfv SpellTime.jar

This would create a new subdirectory called stj where the SpellTime class files are
extracted:

'stj' is also the name of the package for this product.

Now use the following command to run the demo:

java -cp L:\demo; demo

In This Chapter
Differences between the HTML/Javascript and Java Versions
License Key
SpellTime into Your Application

Differences between the HTML/Javascript and Java Versions

This manual describes two separate products, TE Edit Control for HTML/Javascript and TE Edit Control for Java. Although most of
API's are common among these two products (hence the common manual), here are some of the salient differences.

TE Edit Control for HTML/Javascript TE Edit Control for Java

Control File Name SpellTime5.js SpellTime.jar and SpellTime.jar.pack.gz

Additional files needed
to run the editor

Dictionary files: dict35d.txt, dict35i.txt, dict35s.txt None

Technical help file name help.chm, help.pdf help.chm, help.pdf

Demo file name st.htm demo.java

Server OS Any Any

Coding language Javascript Java

Hosting Environment Browser Java desktop or browser

Browser support almost all major browsers IE11 or older only

Additional steps needed
to host within a browser

None. The jar must be signed.

Ease of use within the
browser.

Very simple since the javascript is fully support
within a HTML 5 compliant browser.

Need to tackle security issues that can vary
from java version to version.

Constant prefix sc. Example, sc.STFLAG_USE_APOSTROPHE None, use class object, Example
stj.STFLAG_USE_APOSTROPHE

Auto spell-checking Available Available

Spell-checking dialog Not available Available

License Key

HTML/Javascript version:

Follow the instructions in your license delivery email.

Java Version:

Your license key is e-mailed to you after your order is processed. You would set the

license key using the StSetLicenseKey static function. This should be preferably done
before creating any instance of SpellTime class.

SpellTime.StSetLicenseKey("xxxxx-yyyyy-zzzzz")

Replace the 'xxxxx-yyyyy-zzzzz' by your license key.

SpellTime into Your Application

HTML/Javascript Version:

Copy SpellTIme5.js and the dictionary files (dict35d.txt, dict35i.txt, and dict35s.txt) to the
same web folder where TE Edit Control javascript file is located.

Then modify your html to load the javascript file just below the load statement for TE Edit
Control:

<script src="ter24.js"></script>

<script src="spelltime5.js"></script>

You can then use TE Edit Control's TerCommand(tc.ID_AUTO_SPELL) method to toggle
on/off the auto spell-checking feature. You can also use the 'Other' menu option to
enable/disable the auto spell-checking feature.

Java Version:

Follow these easy steps to incorporate SpellTime into your application:

1. Use the jar program to extract the SpellTime files into one of the folders in the
classpath:

jar -xfv SpellTime.jar.

This would create a sub-folder called stj, which is also the package name for SpellTime.

2. Copy the dictionary files (dict35.*) into your project folder, or any folder available at
run-time.

3. Use the import statement at the top of your program to import the SpellTime package:

import stj.*;

4. Extract the individual words from your application to spell check. You may use the
StParseLine method to parse a buffer containing the text. Call the SpellWord method to
check the extracted word. The demo.java file illustrates both the StParseLine and
SpellWord method calls.

Please refer to the included demo.java program for an example.

Control Methods

Note for SpellTime for HTML/Javascript:

The example supplied with the control methods in this chapter use the stj. prefix which is
applicable only to the Java version of the product. For the HTML/Javascript, all program
constants must be prefixed by a sc. namespace, example:
sc.STFLAG_USE_APOSTROPHE

In This Chapter
SpellDict
SpellWord
SpellString
StGetAlternateWord
StGetReplacement
StAddVowel
StClearHist
StParseLine
StResetUserDict
StSetFlags
StSwitchDict
ToSpellHist
ToUserDict

SpellDict

int SpellDict(CheckWord,WordLen,flags)

String CheckWord; (input) Word to look up. The valid characters in the word are
lower case 'a' to 'z' and an apostrophe character.

int WordLen; (input) The length of the first argument. The length argument is
provide to save the CPU cycles in this very frequently called
routine.

int flags; (input) processing flags. (see the description below)

Description: This method performs a dictionary look up for a given word. The method
scans all 3 dictionaries. The main dictionary is scanned only if the word is not found in the
user dictionary.

This method does not offer any user interface. Nor does it return the alternative words
automatically. If the user interface is desired, use the SpellWord function. The SpellWord
method internally calls the SpellDict function. Use the SpellDict method only when a lower
level interface with the dictionaries is required.

The 'flags' argument may specify the following value:

.

ST_GET_ALTERNATES: Get the alternate words when the input word is not found in any
dictionary. This function, however, does not return the
alternative words automatically. You must call the
StLoadResult method after calling this method to retrieve the
alternate words.

This flag will reduce the performance drastically. If the
alternates are desired, process each word in two steps. First,
call the SpellDict method without the ST_GET_ALTERNATE
flag. If the word is not found, then call this method again, but
this time with the ST_GET_ALTERNATE flag set on. This
process will significantly improve the performance by
eliminating the extra overhead for valid words.

Return: This method can return one of these values:

STD_FOUND: The word look-up successful.

STD_NOT_FOUND: The word not found in the dictionary.

STD_ERROR: A processing error occurred. A MessageBox displays the error message.

If the input word was not found (STD_NOT_FOUND) in the dictionary, and if the input flag
has the ST_GET_ALTERNATE flag turned on, the routine will return the alternate words in
the SugWord global variable array. Similar to the input word, the alternate words are
returned in the lower case. The number of alternate words is returned in the global variable
TotalSugWords. Call the StLoadResult method to retrieve the values of these global
variables

Example:

strng OneWord="January"

int WordLen;

 SpellTime st = new SpellTime();

 OneWord=OneWord.ToLower(); /* convert to lower case */

WordLen=OneWord.Length;

if (SpellTime.STD_NOT_FOUND==st.SpellDict(OneWord,WordLen,0) {

 /* incorrect word */

 /* find alternate words */

 st.SpellDict(OneWord,WordLen,SpellTime.ST_GET_ALTERNATES);

 TotalAltWords=st.StGetAlternateWordCount();

 for (i=0;i<result.TotalAltWords;i++) {

 MessageBox.Show(st.GetAlternateWord(i),"Alternate
Words",MessageBoxButtons.OK);

 }

}

SpellWord

int SpellWord(InputWord,flag,ResultCode)

String InputWord; (input) The input word to spell check. The input word may have
any combination of upper/lower case letters 'a' through 'z' and
an apostrophe character.

int flag; (input) Process control flags.

StInteger ResultCode; (output) Result codes as described below.

Description: The routine provides a high level user interface with the dictionaries. This
routine calls the SpellDict routine to actually look up the dictionaries. When a buffer
containing many words needs to be checked, use the StParseLine method to extract the
individual words. You can then use the SpellWord method to check each extracted word.
When the input word is not found in any dictionary, the routine will take an action
indicated by the flag argument. The flag argument may be set to one or more of these
constants:

ST_INTERACTIVE Initiate a dialog box to accept user response for an incorrect
word. Not applicable to the html/javascript version.

To indicate more than one flag constants, use the logical OR (|) operator.

It is possible to highlight a misspelled word in your application window before showing the
SpellTime dialog box for the correction. To accomplish this, first call the SpellWord
method without the ST_INTERACTIVE flag. If the method returns with a FALSE value
(misspelled word), call the SpellWord method again, but this time with the
ST_INTERACTIVE flag turned on (see example).

Return: This method returns a true value if the word is found in the dictionary. The
method also returns a true value if the currently incorrect word was previously ignored by
the user. Therefore, a word that is not found in the dictionary is still considered correct if
the user had previously considered the word acceptable.

The method returns a false value when the word is not found in the dictionary or if a
processing error occurred. In such a condition, SpellTime returns the result codes
(ResultCode.getValue() parameter) as following:

ST_IGNORE: The user ignored this incorrect word. There is no further action
needed on the part of the calling routine.

ST_REPLACE: The user wishes to replace the current word with another word.
This flag indicates that the replacement word was derived from
the history buffer. The replacement word can be retrieve using
the StGetReplacment function.

ST_ADD: The user added the current word to the user dictionary. There is
no further action needed on the part of the calling routine.

ST_INPUT: The user typed in a replacement word for the current word. The
replacement word can be retrieve using the StGetReplacment

function.

ST_EXIT: This flag indicates that the user wishes to exit the spell
checking session. The calling routine should now take an
appropriate action to end the session.

ST_TOO_LONG: This flag indicates that the current word was too long to check.

ST_ERROR: This flag indicates a processing error. The actual error
message is displayed using a MessageBox.

The ResultCode variable can have more than one of these flags set. Use the logical AND
(&) operator to test for a flag, i.e. if (code&SpellTime.ST_EXIT) ...

When the result variable is equal to one of the first four codes, a set of alternative words
can be retrieve by using the StGetAlternateWord methods.

Example:

 string OneWord="January"

 int WordLen;

 StInteger ResultCode=new StInteger();

 SpellTime st=new SpellTime();

 if (!st.SpellWord(OneWord,0,out ResultCode) {

 /* incorrect word */

 /* highlight the misspelled word if desired */

 .

 .

 .

 /* call again with the ST_INTERACTIVE flag */

 st.SpellWord(OneWord,SpellTime.ST_INTERACTIVE,ResultCode);

 code = ReturnCode.getValue();

 if ((code&st.ST_EXIT)!=0) return;

 if ((code&st.ST_ERROR)!=0) return;

 string replace=st.StGetReplacement();

 if (replace.Length>0) { /* replace */

 OneWord=replace;

 }

 }

 else {

 MessageBox.Show("Correct Word","",MessageBoxButtons.OK);

 }

This example calls the SpellWord routine to spell check a word. The first call is made
without the ST_INTERACTIVE flag merely to detect a misspelled word. When a
misspelled word is detected, the SpellWord method is called again to conduct the
correction session. Between these two calls, you can insert the necessary statements to
highlight the misspelled word in your application window.

After the second call, the 'exit' and the 'processing error' condition is examined by
checking for the ST_EXIT and ST_ERROR flags. Otherwise the replace variable is
checked for a replacement word. If a replacement word is available
(strlen(result.replace)>0), the replacement word is copied to the OneWord variable.

You may like to compare this example with the one given with the SpellDict function. This
example reveals that the SpellWord method provides a much higher level of user
interface compared to the SpellDict function.

SpellString

int SpellString(InString, OutString)

String InString; (input) The text to be spell-checked.

StString OutBuf; (output) This StString class variable receives the corrected
text.

Description: This method takes a string of text as input and returns the spell-checked
text.

Return: This method returns the number of incorrect words found. A negative return
value indicates a processing error.

Example:

String InString="This is a testss line"

StString OutString = new StString();

if (stj.SpellString(InString, OutString)) {

 String SpellCheckedText = OutString.getValue();

}

StGetAlternateWord

String StGetAlternateWord(WordNumber)

int WordNumber; (input) Alternate word number to retrieve.

Description: This method can be used to retrieve the alternate words suggested by the
SpellWord function.

Return: The method returns the total number of suggested words.

Example:

 int TotalAlternateWords;

 String AlternateWord;

 int i;

 if (!st.SpellWord(OneWord,0, ResultCode) {

 /* incorrect word */

 TotalAlternateWords=st.StGetAlternateWordCount();

 for (i=0;i<TotalAlternateWords;i++) {

 /* retrieve each alternate word

 AlternateWord=StGetAlternateWord(i);

 }

 }

StGetReplacement

String StGetReplacement()

Description: This method can be used to retrieve the replacement word suggested by
the SpellWord function.

Return: This method returns the replacement word.

Example:

 String ReplaceWord;

 if (!st.SpellWord(OneWord,0,ResultCode) {

 /* incorrect word */

 ReplaceWord=st.StGetReplacement();

 }

StAddVowel

boolean StAddVowel(chr)

char chr; A vowel character to be added to the vowel list. This
character must be specified in lower case.

Description: This method can be called after initializing a spell-checking session.

Return: This method returns TRUE when successful. Otherwise it returns a FALSE
value.

StClearHist

int StClearHist()

Description: Use this method to clear the SpellTime history buffer.

Normally SpellTime will remember the misspelled words that are 'ignored' or 'replaced' by
another word. On the subsequent occurrences of these words, SpellTime automatically
provides the correction. The misspelled words are stored in the history buffer. This
method allows you to clear this buffer any time. For example, you may like to clear the
history buffer before starting a new spell checking session.

Return: This method returns a TRUE if successful. Otherwise it returns a FALSE value.

Example:

 st.StClearHist();

 while (!EOF) {

 /* spell check statements here */

 }

StParseLine

int StParseLine(buffer,word,ref WordIndex, ref CurIndex,LineLen)

String buffer; (input) Pointer to the string containing the words to extract.

StString word; (output) The StString class variable where the extracted word is
to be copied.

StInteger WordIndex; (output) Starting position of the extracted word with respect to
the beginning of the buffer.

StInteger CurIndex; (input/output) The method begins examining the buffer location
as given by this argument. When a word is extracted, this

location is updated to contain the pointer after the end of the
word. Therefore, the next call to the StParseLine routine will
automatically begin the search where the previous call ended.

int LineLen; (input) The length of the buffer to examine. The length is
counted from the beginning of the buffer. If the calling routine
inserts or deletes a word in the buffer, it should update this
variable appropriately to reflect the updated length of the buffer.

Description: Use this routine to parse a buffer containing words to be spell checked. Each
call returns a word. The extracted word contains a combination of upper/lower case
characters 'a' to 'z' and the apostrophe character. This word is acceptable to the SpellWord
function. Therefore, the main usage of this method is to create words for the SpellWord
function. Your application can call this method repetitively until all words from a buffer are
extracted.

Return: The method returns the length of the extracted word. A zero length indicates the end
of the buffer.

Example:

 String line="It pays to increase your word power

 (Dr. Funk).";

 StString CurWord=new StString();

 StInteger WordIndex = new StInteger();

 StInteger CurIndex = new StInteger();

 StInteger ResultCode = new StInteger();

 int LineLen;

 LineLen=line.length();

 SpellTime st = new SpellTime();

 while ((WordLen=st.StParseLine(line, CurWord,

 WordIndex, LineIndex, LineLen))>0) {

 String word=CurWord.getValue();

 if(!st.SpellWord(word ,ST_INTERACTIVE, ResultCode){

 // Incorrect Word

 int code = ResultCode.getValue();

 if ((code&ST_EXIT)>0) return;

 if ((code&ST_ERROR)>0) return;

 String replace=st.GetReplacement();

 if (replace.length()>0) {

 /* insert the new word in the line buffer */

 /* update the LineLen variable */

 }

 }

 else {

 // Correct Word

 }

 }

StResetUserDict

int StResetUserDict(new,old)

String new; (input) Pathname of the new user dictionary.

StString old; (output) Pathname of the previous user dictionary.

Description: This routine closes the current user dictionary and opens the specified new
user dictionary. If the new dictionary parameter is "", the current dictionary remains open.
However, its contents are written out to the disk file. The second argument receives the
pathname of the previous user dictionary. The second argument should point to a string
large enough to hold a complete pathname.

This method serves two purposes. First, it is used to update the user dictionary file with
the contents of the user dictionary buffer. It is accomplished by calling this method with
empty string arguments at the end of the spell checking session. Second, this method
can be used to activate a new user dictionary before initiating a spell checking session.
By default, the 'dict35.u' file is used as the user dictionary. An application that sets a new
user dictionary should activate the previous dictionary at the end of the session. This also
causes the new user dictionary file to be updated.

Return: This method returns a TRUE value to indicate the success, and a FALSE value
to indicate a processing error. The pathname of the previous dictionary is copied to the
string pointed by the second argument.

Example:

 1. update the existing user dictionary file

 st.StResetUserDict("",null);

 2. open a new user dictionary

 StString old=new StString();

 st.StResetUserDict("mydict",old);

 /* spell checking statements here */

 .

 .

 String OldDict = old.getValue();

 st.StResetUserDict(OldDict,"");

StSetFlags

int StSetFlags(set, flag)

bool set; TRUE to set the flag, or FALSE to reset it.

int flag; The flag to set or reset.

The following flags are available currently:

STFLAG_USE_APOSTROPHE: SpellTime normally treats the apostrophe
character as the possessive case modifier.
Instead, you can set this flag in the
beginning of your program to treat the
apostrophe character as a regular
character.

STFLAG_SPANISH_DLG: Show the word-selection dialog box in
Spanish.

STFLAG_NO_NUM_IN_WORD This flag instructs the StParseLine method
to filter words containing numbers.

STFLAG_DUTCH_DLG Show the word-selection dialog box in
Dutch.

STFLAG_GERMAN_DLG Show the word-selection dialog box in
German.

STFLAG_FRENCH_DLG Show the word-selection dialog box in
French.

STFLAG_ALL_CAPS_TO_LOWER Convert a capitalized word to lower case for
spell checking. This feature is useful when
using a case-sensitive dictionary.

Return: This method returns the new value of the flag bits.

StSwitchDict

bool StSwitchDict(DictName)

String DictName; The new dictionary file name including the '.d' extension,
and any path specification.

Example: mydict35.d

 c:\uk\dict35.d

Return: This method returns true when successful.

ToSpellHist

boolean ToSpellHist(CurWord,flag,ReplaceWord)

String CurWord; (input) A word that needs to be inserted into the history
buffer.

char flag; (input) The flag that indicates whether the word is (I) ignored
by the user or is (R) replaced by another word.

String ReplaceWord (input) Pointer to the replacement word when the flag is
equal to 'R'.

Description: This routine is used to insert a word into the history buffer. All subsequent
occurrences of the given word is automatically ignored or replaced by the library. If the
word is being replaced by another word, the replacement word is provided by the last
argument.

Both the input word and the replacement word must be provided in lower case.

Return Value: This method returns true when successful.

ToUserDict

int ToUserDict(CurWord)

String CurWord; (input) A word that needs to be added to the user dictionary
buffer.

Description: This routine is used to add a word to the user dictionary. The input word
must be provided in lower case.

Also note that your application needs to call the StResetUserDict method at the end of
your program to actually write the updated user dictionary to the disk file.

Return Value: This method returns true when successful.

See Also
StResetUs
erDict

Utility Classes
In This Chapter
StInteger
StString

StInteger

This class is used with a number of SpellTime methods to pass the 'reference' type of
integer parameters. For example, the third parameter for the SpellWord method is of the
type StInteger. It allows SpellWord to return the 'return code' by updating the StInteger
value. The calling application can then retrieve the the return code by using the
getValue() method of the StInteger class object.

StInteger ReturnCode = new StInteger();

boolean IsCorrect = stj.SpellWord("mountain",0, ReturnCode);

if (!IsCorrect) { // if misspelled

 int code=ReturnCode.getValue();

}

StString

This class is used with a number of SpellTime methods to pass the 'reference' type of
String parameters. For example, the second parameter for the StParseLine method is of
the type StString. It allows StParseLine to return the 'current word' by updating the
StString value. The calling application can then retrieve the the current word by using the
getValue() method of the StString class object.

StInteger WordIndex = new StInteger();

StInteger CurIndex = new StInteger();

StString CurWord = new StString();

boolean WordExtracted= StParseLine(TextLine , CurWord,
WordIndex,

CurIndex,LineLen)

if (WordExtracted) { // a word extracted from the text line

 String word=CurWord.getValue();

}

Memory Considerations

Some SpellTime data objects have a fixed memory requirement, where as other objects
have flexible memory requirements. In this section we will discuss each data component.
Where possible, we will also indicate ways of reducing memory overhead by curtailing
certain functionalities.

Dictionary Index: This component consists of data pointers (4 bytes), data size (4
bytes), and data location (1 byte). There are 784 (ST_SIZE*ST_SIZE) dictionary indices.
Therefore the total memory requirement is approximately 7 K bytes ((4+4+1)*784). This
memory is allocated in the FAR location.

Small Word Dictionary: At present, SpellTime requires approximately 450 bytes to read
the small word dictionary (dict35.s) into memory.

User Dictionary: The memory requirement for this component is equal to the size of the
user dictionary plus an allowance (ST_BUF_SIZE) for new words. At present the
ST_BUF_SIZE is set to 2 K bytes.

History Buffer: The initial size of the history buffer is equal to 2*ST_BUF_SIZE. The
history buffer can expand during the spell checking session as needed. You can reduce
the initial memory requirement of this component by assigning a smaller value to the
ST_BUF_SIZE global constant.

Main Dictionary Data: The cumulative memory requirement for all objects in the main
dictionary data file is approximately 350 K bytes. However, the memory requirement for
this component is flexible (minimum memory requirement = 0 K bytes). The main
dictionary data is not loaded into the memory during the initialization. The data is read
into the discardable memory buffers as needed during the spell checking session.

Interface With TE Edit Control

TE Edit Control can interface with SpellTime without any coding on your part. Simply
move the SpellTime classes to the directory where the Tej files are located. Alternatively,
you can copy the SpellTime classes to a separate folder, and include this folder in the
classpath switch for Java command to launch your application.

Also move all the dict35.* files to the same directory.

After the editor window is created, set the SpellTime key as following.

Tern.TerSetStLicenseKey(LicenseKey)

Your license key for SpellTime is e-mailed to you after your order for SpellTime is
processed. Please note that your license key for TE Edit Control is not valid when calling
the TerSetStLicenseKey method.

To invoke spell checking from within your program, simply add this statement:

tern.TerCommand(ID_SPELL)

or, set the command property of the control:

tern.command=ID_SPELL

Dictionary Update Utilities

The package comes with 3 DOS based utilities to add new words to the main dictionary.
Follow these steps to add new words to the main dictionary:

1) Run the decomp35.EXE utility to decompress the main dictionary into a number of
text files. The text files are named as D35_A through D35_Z, D35_n, D35_SML.
dict35.map. The D35_A through D35_Z files contain the words starting with an English
alphabet. If the dictionary supports additional characters, those words are written into the
files with name (D35_xxxx) built by concatenating the unicodeI value of the character in
the hex format to the prefix 'D35_'. For Example, the D35_0027 file contains words that
start with an apostrophe character, i.e. 'twill. The D35_SML file is a copy of dict35.s, the
small word dictionary. The words in the text files have compression codes in the form of a
period (.) character.

Note: All text files (d35_*, dict35.map, etc) used by dictionary update utilities are in
Unicode text format. A unicode text file includes a two signature bytes (0xFF and 0xFE)
in the beginning of the files. Thereafter, each 2 byte sequence is treated as one unicode
character. You must use a unicode aware editor (such as Notepad) to view or edit these
files.

The dict35.map contains the character map supported by the dictionary. The file has one
line for each supported character. Each line has two letters separated by a comma. The
first letter denotes the uppercase form of the letter, and the second letter denotes the
lowercase form of the letter. Example: A,a.

Syntax:

decomp35 [/S]

The optional /S switch suppresses the program messages.

2) Run the merge35.EXE utility to merge a list of words contained in a word file to the
D35_* files. The word file must be in the Unicode text format (see note above). The word
file should consist of words delimited by a space, comma, or carriage return/new line
combination. The individual words can contain the characters supported indicated in the
dict35.map file. For example, the standard dictionary supports these characters:

Alphabets 'a' through 'z'

Alphabets 'A' through 'Z'

and an apostrophe character.

The merge utility converts the uppercase characters to the lowercase. A word must not
be greater than 40 characters. The apostrophe characters can be used only as an
abbreviator, and NOT as a possessive specifier. A merge file may not be larger than
32000 bytes. You can break a large merge file into smaller files and run the merge35
program multiple times.

Examples of valid words in a word file:

cat, dog

cats,dogs

Apple,

he'll

Examples of invalid words:

21ST /* numerics not allowed */

cat's /* possessive case not allowed */

apple-growers /* hyphenation not allowed */

The dict35.u file contains the words in the valid format. Thus, these files can be directly
merged into the dictionary text files.

Syntax:

MERGE35 MergeFile [/S]

MergeFile: Name of the word file.

The optional /S switch suppresses the program messages.

Example:

MERGE dict35.u

MERGE dict35.app /S

MERGE YourMergeFile

As an alternative, you can also use a unicode aware text editor such as Notepad to add
or delete words form the D35_A through D35_Z, and D35_xxxx files. This manual
method requires utmost care so as not to disturb the sorting order within the file. The
sorting order is governed by the position of the characters in the dict35.map file. In the
standard dictionary, the text files assume that the apostrophe character has a higher
collating sequence than the letter 'z'. The merge35 utility also inserts the compression

codes appropriately into the new words. If you are manually editing the text files, you will
need to provide these compression codes to match the neighboring words. Because of
these considerations, we encourage the use of the merge35 program instead.

3) Run the comp35.EXE utility to compress the dictionary text files (D35_*) to form the
dict35.d and dict35.s files.

Syntax:

comp35 [/S]

The optional /S switch suppresses the program messages.

Although these 3 steps are required, you do not necessarily have to run the first step
every time. Normally you can delete the D35_* files after the last step. But if you have
enough disk space, you may like to retain them. If the text files are retained, you can skip
the first step the next time.

Building a Foreign Language Dictionary

The dictionary update utility described in the previous chapter can be used to build a
foreign language dictionary. The dictionary update utilities support foreign languages
which are based on a single byte character set. Follow these steps to build a foreign
language dictionary.

1. Build the character map file (dict35.map). The character map file is a unicode text file
which contains the characters supported by the language. To retrieve the default map
file, run the decomp35.exe program. The default map file contains these lines:

A,a

B,b

C,c

D,d

E,e

F,f

G,g

H,h

I,i

J,j

K,k

L,l

M,m

N,n

O,o

P,p

Q,q

R,r

S,s

T,t

U,u

V,v

W,w

X,x

Y,y

Z,z

','

If your language uses the English alphabets, then you don't need to modify this file. If you
language uses the English alphabets and also some additional characters, add the
additional characters after the last line in the file. You must use a unicode aware editor
such as Notepad to edit the map file.

If your language uses non-English alphabets, delete the existing lines from this file and
add new lines, one for each character supported by the language. Each line should
contain 2 characters separated by a comma. The first character should be the uppercase
form for the letter. The second character should be the lowercase variation for the letter.
For some characters the uppercase and the lowercase form may be identical.

The standard English dictionary map has 27 characters ('a' to 'z', and an apostrophe
character). SpellTime supports up to 62 characters for a language. SpellTime works
more efficiently with dictionaries that have a smaller number of characters in the
character set.

2. Once the map file is built, you are ready to merge your list of words by using the
merge35.exe program. This program merges a file containing the list of words into the
decoded dictionary file set. Please refer to the previous chapter for the description of the
merge program.

3. Once all the merge files are merged into the decoded dictionary file set, you can use
the comp35.exe program to build the binary dictionary file.

Dictionary Data Format

This section describes the data format of the various dictionary components.

An application developer does not need to understand the dictionary format of the main
dictionary. Nonetheless, the data format is described here for those developers who have
time and inclination to dwell into the complexity of this subject matter.

Main Dictionary

The main dictionary consist of three files: dict35.d, dict35.i and dict35.S. The dict35.s file
contains small words that consist of one or two letters. The words in this file are stored in
lowercase and are delimited by a comma.

The dict35.d file contains the words that have more than 2 characters. This file is divided
into various word buckets. Each word bucket contains words that have a common first
two letters. For example, words that start with 'ab' are stored in one bucket, and the
words that start with 'ac' are stored in another bucket. The dict35.I file contains the
pointer to each word bucket. The dict35.i file also contains the size of each word bucket.

The words in a word bucket are arranged in the alphabetic order. Further, the words are
stored in a compressed format. To understand the compression scheme employed in the
dictionary, consider these 3 words:

 cerebra

 cerebral

 cerebrally

These words clearly have common string components. The dictionary will store these
words in a series as following:

 cere bra l lly

Obviously, this series must be stored in such a fashion so that three individual words can
be extracted during the spell checking session. The series has four components. The
first word can be reconstructed by combining the first and the second component. The
second string can be reconstructed by combining the first, second and the third
component. The third word can be reconstructed by combining the first, second and the
fourth component. Therefore, it is necessary to delimit these components in the
dictionary.

The process of delimiting the components is facilitated by a concept of levels. A level
determines the hierarchy of a component in its parent words. In the example above, the
individual components will be assigned the following levels:

 cere 0

 bra 1

 l 2

 lly 2

Normally the alphabetic characters are mapped to ASCII 1 to 26. The apostrophe
character is mapped to ASCII 27. Therefore, all characters in level zero ("cere") will be
mapped to the values between 1 and 26. The first character of the second level ("bra")
will be raised to level one by adding ST_SIZE to its level zero value. The second
character of the second level will be at level zero. The last character of the second level
will be raised to the highest level (ST_MAX_LEVELS). The ST_MAX_LEVELS indicates
an end of the word. With the information provided in this paragraph, you can reconstruct
the first word.

To reconstruct the second word, look at the third component ("l"). This component has
only one character. This character is raised to the second level. Because there are no
additional characters, an additional character (ST_END_OF_int) is appended which
marks the end of this word.

To reconstruct the third word, notice that the fourth component is also raised to the
second level. By applying the logic of the preceding two paragraphs, the third word can
be constructed by combining the first, second, and the fourth component.

The end-of-series is indicated by appending the ST_NEW_STREAM character.

User Dictionary

The user dictionary is automatically updated by the SpellTime routines. All words are
stored in lowercase with the first character capitalized. Each word is delimited by the
comma character.

This software is designed keeping the accuracy and the reliability concerns as the main
considerations. Every effort has been made to make the product reliable and error free.
However, Sub Systems, Inc. makes no warranties against any damage, direct or indirect,
resulting from the use of the software or the manual and can not be held responsible for
the same.

Windows, .NET, Visual C++ and Visual Basic are the trademarks of Microsoft Corp.

616.htm
173.htm

	General Overview
	Technical Overview
	Getting Started
	Differences between the HTML/Javascript and Java Versions
	License Key
	SpellTime into Your Application

	Control Methods
	SpellDict
	SpellWord
	SpellString
	StGetAlternateWord
	StGetReplacement
	StAddVowel
	StClearHist
	StParseLine
	StResetUserDict
	StSetFlags
	StSwitchDict
	ToSpellHist
	ToUserDict

	Utility Classes
	StInteger
	StString

	Memory Considerations
	Interface With TE Edit Control
	Dictionary Update Utilities
	Building a Foreign Language Dictionary
	Dictionary Data Format

