
General Overview
 SpellTime allows you to incorporate a spell checker into your text based product. The

product comes with a Windows DLL and its complete source code. SpellTime offers the
following features:

SpellTime incorporates three types of dictionaries. The main dictionary contains
more than 100,000 English words. This dictionary is compressed to occupy only
350 K bytes on the disk. The efficient spell checking routines decompress the
main dictionary data at the run time. The user dictionary allows your users to enter
new words into the dictionary during the spell checking session.
You can use dictionary utilities to create foreign language dictionaries using the
unicode character set.
The SpellTime routine can interface with your application at different levels. Your
application can call SpellTime to check a single word, or to check all words in a
buffer, or to check the entire text file.

SpellTime will show the incorrect word on the screen with a number of alternate
words to choose from. The user may also add the incorrect word to the user
dictionary, or ignore the incorrect word, or type in a replacement word. SpellTime
remembers a user action for an incorrect word, so that any subsequent occurrence
of the same word is automatically corrected. SpellTime allows your application to
highlight the incorrect word before showing the dialog box for correction.

SpellTime routines are highly optimized.
SpellTime employs a flexible memory management technique. The main
dictionary components are loaded as needed into the discardable memory blocks.
This technique allows the Windows to free up memory blocks in tight memory
situations. SpellTime routines needs approximately 20 K bytes of memory for the
initial overhead. Additional 20 to 50 K bytes of memory may be needed during the
spell checking session for the temporary data structures.
You can create multiple speller sessions for each thread.
SpellTime includes an interface to TE Edit Control. This interface consists of a
module that can be linked with your program. This module can check the entire file
or just the highlighted parts. The module supports a line or character highlighted
block. This module eliminates any need of programming for incorporating spell
checking facility into your application.
The product comes with a .NET DLL and its complete source code written using
c# managed code.

Page 1

Technical Overview
 The SpellTime product consists of two components: a) a set of dictionaries, and b) a set of

DLL functions to access the dictionaries.

The main dictionary contains more than 100,000 English words. The data for the main
dictionary is contained in a file called dict35.d. The index for the data is contained in
another file called dict35.i. The dictionary data is stored in a compressed format. The data
is decompressed selectively during the spell checking session. A subset of the main
dictionary data resides in a separate file called dict35.s. This file contains all words that
consist of one or two letters. This separation of small words from the larger ones allows for
enhanced optimization of the word look up algorithm.

The second type of dictionary is the user dictionary. The user can add a new word into this
dictionary during the spell checking session.

The user dictionary is shipped empty. The detail data formats of all the dictionaries are
described in a later chapter.

SpellTime offers a number of DLL functions to interface with the dictionary. The main
function is called SpellWord. This function is frequently called during a spell checking
session. The SpellWord function handles screen interactions, and word searches. This
function also manages a session database of incorrect words. This database is used to
supply automatic correction of repetitively occurring words. The SpellWord function calls
the SpellDict function to actually search the dictionary for a word. The SpellDict function
employs a highly optimized algorithm to deliver fast word look up. This function can also
deliver a set of alternative words for an incorrect word.

When the entire contents of a buffer needs to be checked, you can call the StParseLine
function repetitively to extract the individual words. The SpellWord function can then be
called to check the individual words.

Page 2

Getting Started
In This Chapter
SpellTime Files
License Key
SpellTime into Your Application

Page 3

SpellTime Files

 The SpellTime diskettes contain the following files:

A. File which interface with your application:

 SPELLTIME.DLL The DLL containing the SpellTime functions.

 B. Dictionary files:

 dict35.d Main dictionary data file

 dict35.i Main dictionary index file

 dict35.s Small word dictionary

 dict35.u User Dictionary

 C. Source code files for the SpellTime DLL:

 spelltime.cs The C# source code for the DLL.

 sldlg_suggest.cs Use interaction dialog

Page 4

License Key
 Your license key is e-mailed to you after your order is processed. You would set the

license key using the StSetLicenseKey static function. This should be preferably done
before creating any instance of SpellTime class.

SpellTime.StSetLicenseKey("xxxxx-yyyyy-zzzzz")

Replace the 'xxxxx-yyyyy-zzzzz' by your license key.

Page 5

SpellTime into Your Application
 Follow these easy steps to incorporate SpellTime into your application:

1.Copy spelltime.dll and dictionary files (dict35.*) to your application directory.
2.Add a reference to spelltime.dll in your application. Choose a module in your
application that will call the spell checker. Add a 'using' or 'import' statement in the
beginning of the module to refer to SpellTime class namespace:

using SubSystems.ST

or,

Imports SubSystems.TE

Now create an instance of SpellTime class:

SpellTime st = new SpellTime()

3.Extract the individual words from your application to spell check. You may use
the StParseLine function to parse a buffer containing the text. Call the SpellWord
function to check the extracted word. The DEMO.CS file illustrates both the
StParseLine and SpellWord function calls. These functions are also described in
detail in the Callable DLL functions section.

You will need to pass flag values to many of the DLL functions. These flags are
defined in the spelltime.dll file and they can be accessed through SpellTime class:

SpellDict("dog",3,SpellTime.ST_GET_ALTERNATES)

Page 6

Control Methods
 The source code for the SpellTime DLL functions is contained in SPELL.C. The prototypes

of the routines are contained in the SPELL.H file (Use the SPELL.BAS file with a Visual
Basic application). Your program must include this file to ensure proper function declaration
(see Getting Started). This section describes the routines in an alphabetic order.

The description of each function is divided in two parts. This first part describes the syntax,
argument description and a brief description of the functionality. The second part describes
the source code for the function.

Most functions have an additional session dependent form which can be used with a
specific session id. These functions are suffixed with a letter '2'. A unique session id can be
created using the StInitSession. After the spell checking session, the session id must be
terminated using the StEndSession function.

In This Chapter
SpellDict
SpellWord
SpellString
StGetAlternateWord
StGetReplacement
StAddVowel
StClearHist
StParseLine
StResetUserDict
StSetFlags
StSwitchDict
ToSpellHist
ToUserDict

Page 7

SpellDict
 int SpellDict(CheckWord,WordLen,flags)

string CheckWord; (input) Word to look up. The valid characters in the word are lower

case 'a' to 'z' and an apostrophe character.

 int WordLen; (input) The length of the first argument. The length argument is
provide to save the CPU cycles in this very frequently called
routine.

 unsigned int flags; (input) processing flags. (see the description below)

Description: This function performs a dictionary look up for a given word. The function scans
all 3 dictionaries. The main dictionary is scanned only if the word is not found in the user
dictionary.

This function does not offer any user interface. Nor does it return the alternative words
automatically. If the user interface is desired, use the SpellWord function. The SpellWord
function internally calls the SpellDict function. Use the SpellDict function only when a lower
level interface with the dictionaries is required.

The 'flags' argument may specify the following value:

.

 ST_GET_ALTERNATES: Get the alternate words when the input word is not found in any
dictionary. This function, however, does not return the alternative
words automatically. You must call the StLoadResult function
after calling this function to retrieve the alternate words.

This flag will reduce the performance drastically. If the alternates
are desired, process each word in two steps. First, call the
SpellDict function without the ST_GET_ALTERNATE flag. If the
word is not found, then call this function again, but this time with
the ST_GET_ALTERNATE flag set on. This process will
significantly improve the performance by eliminating the extra
overhead for valid words.

Return: This function can return one of these values:

STD_FOUND: The word look-up successful.

STD_NOT_FOUND: The word not found in the dictionary.

STD_ERROR: A processing error occurred. A MessageBox displays the error message.

If the input word was not found (STD_NOT_FOUND) in the dictionary, and if the input flag has
the ST_GET_ALTERNATE flag turned on, the routine will return the alternate words in the
SugWord global variable array. Similar to the input word, the alternate words are returned in
the lower case. The number of alternate words is returned in the global variable
TotalSugWords. Call the StLoadResult function to retrieve the values of these global
variables

Example:

strng OneWord="January"

Page 8

int WordLen;

 SpellTime st = new SpellTime();

 OneWord=OneWord.ToLower(); /* convert to lower case */

WordLen=OneWord.Length;

if (SpellTime.STD_NOT_FOUND==st.SpellDict(OneWord,WordLen,0) {

 /* incorrect word */

 /* find alternate words */

 st.SpellDict(OneWord,WordLen,SpellTime.ST_GET_ALTERNATES);

 TotalAltWords=st.StGetAlternateWordCount();

 for (i=0;i<result.TotalAltWords;i++) {

 MessageBox.Show(st.GetAlternateWord(i),"Alternate

Words",MessageBoxButtons.OK);

 }

}

Page 9

SpellWord

 int SpellWord(InputWord,flag,out ResultCode)

 string InputWord; (input) The input word to spell check. The input word may have any
combination of upper/lower case letters 'a' through 'z' and an
apostrophe character.

 int flag; (input) Process control flags.

 int ResultCode; (output) Result codes as described below.

 Description: The routine provides a high level user interface with the dictionaries. This
routine calls the SpellDict routine to actually look up the dictionaries. When a buffer
containing many words needs to be checked, use the StParseLine function to extract the
individual words. You can then use the SpellWord function to check each extracted word.
When the input word is not found in any dictionary, the routine will take an action indicated
by the flag argument. The flag argument may be set to one or more of these constants:

 ST_BEEP Produce a beep sound to indicate an incorrect word.

 ST_INTERACTIVE Initiate a dialog box to accept user response for an incorrect word.

 To indicate more than one flag constants, use the logical OR (|) operator.

It is possible to highlight a misspelled word in your application window before showing the
SpellTime dialog box for the correction. To accomplish this, first call the SpellWord function
without the ST_INTERACTIVE flag. If the function returns with a FALSE value (misspelled
word), call the SpellWord function again, but this time with the ST_INTERACTIVE flag
turned on (see example).

Return: This function returns a true value if the word is found in the dictionary. The function
also returns a true value if the currently incorrect word was previously ignored by the user.
Therefore, a word that is not found in the dictionary is still considered correct if the user
had previously considered the word acceptable.

The function returns a false value when the word is not found in the dictionary or if a
processing error occurred. In such a condition, SpellTime returns the result codes
(ResultCode parameter) as following:

 ST_IGNORE: The user ignored this incorrect word. There is no further action
needed on the part of the calling routine.

 ST_REPLACE: The user wishes to replace the current word with another word. This
flag indicates that the replacement word was derived from the history
buffer. The replacement word can be retrieve using the
StGetReplacment function.

 ST_ADD: The user added the current word to the user dictionary. There is no
further action needed on the part of the calling routine.

 ST_INPUT: The user typed in a replacement word for the current word. The
replacement word can be retrieve using the StGetReplacment
function.

 ST_EXIT: This flag indicates that the user wishes to exit the spell checking
session. The calling routine should now take an appropriate action

Page 10

to end the session.

 ST_TOO_LONG: This flag indicates that the current word was too long to check.

 ST_ERROR: This flag indicates a processing error. The actual error message is
displayed using a MessageBox.

 The ResultCode variable can have more than one of these flags set. Use the logical AND
(&) operator to test for a flag, i.e. if (code&SpellTime.ST_EXIT) ...

When the result variable is equal to one of the first four codes, a set of alternative words
can be retrieve by using the StGetAlternateWord functions.

Example:

 string OneWord="January"

 int WordLen;

 int ResultCode;

 SpellTime st=new SpellTime();

 if (!st.SpellWord(OneWord,0,out ResultCode) {

 /* incorrect word */

 /* highlight the misspelled word if desired */

 .

 .

 .

 /* call again with the ST_INTERACTIVE flag */

 SpellWord(OneWord,SpellTime.ST_INTERACTIVE,ResultCode);

 if (ResultCode&SpellTime.ST_EXIT) return;

 if (ResultCode&SpellTime.ST_ERROR) return;

 string replace=st.StGetReplacement();

 if (replace.Length>0) { /* replace */

 OneWord=replace;

 }

Page 11

 }

 else {

 MessageBox.Show("Correct Word","",MessageBoxButtons.OK);

 }

This example calls the SpellWord routine to spell check a word. The first call is made
without the ST_INTERACTIVE flag merely to detect a misspelled word. When a misspelled
word is detected, the SpellWord function is called again to conduct the correction session.
Between these two calls, you can insert the necessary statements to highlight the
misspelled word in your application window.

After the second call, the 'exit' and the 'processing error' condition is examined by checking
for the ST_EXIT and ST_ERROR flags. Otherwise the replace variable is checked for a
replacement word. If a replacement word is available (strlen(result.replace)>0), the
replacement word is copied to the OneWord variable.

You may like to compare this example with the one given with the SpellDict function. This
example reveals that the SpellWord function provides a much higher level of user interface
compared to the SpellDict function.

Page 12

SpellString

 int SpellString(InString, OutString)

 string InString; (input) The text to be spell-checked.

 string OutBuf; (output) This string variable receives the corrected text.

 Description: This function takes a string of text as input and returns the spell-checked
text.

Return: This function returns the number of incorrect words found. A negative return value
indicates a processing error.

Page 13

StGetAlternateWord

 string StGetAlternateWord(WordNumber)

 int WordNumber; (input) Alternate word number to retrieve.

 Description: This function can be used to retrieve the alternate words suggested by the
SpellWord function.

Return: The function returns the total number of suggested words.

Example:

 int TotalAlternateWords;

 string AlternateWord;

 int i;

 if (!st.SpellWord(OneWord,0,out ResultCode) {

 /* incorrect word */

 TotalAlternateWords=st.StGetAlternateWordCount();

 for (i=0;i<TotalAlternateWords;i++) {

 /* retrieve each alternate word

 AlternateWord=StGetAlternateWord(i);

 }

 }

Page 14

StGetReplacement
 string StGetReplacement()

 Description: This function can be used to retrieve the replacement word suggested by the
SpellWord function.

Return: This function returns the replacement word.

Example:

 string ReplaceWord;

 if (!st.SpellWord(OneWord,0,out ResultCode) {

 /* incorrect word */

 ReplaceWord=st.StGetReplacement();

 }

Page 15

StAddVowel

 bool StAddVowel(chr)

 char chr; A vowel character to be added to the vowel list. This character
must be specified in lower case.

 Description: This function can be called after initializing a spell-checking session.

Return: This function returns TRUE when successful. Otherwise it returns a FALSE value.

Page 16

StClearHist
 int StClearHist()

 Description: Use this function to clear the SpellTime history buffer.

Normally SpellTime will remember the misspelled words that are 'ignored' or 'replaced' by
another word. On the subsequent occurrences of these words, SpellTime automatically
provides the correction. The misspelled words are stored in the history buffer. This function
allows you to clear this buffer any time. For example, you may like to clear the history
buffer before starting a new spell checking session.

Return: This function returns a TRUE if successful. Otherwise it returns a FALSE value.

Example:

 st.StClearHist();

 while (!EOF) {

 /* spell check statements here */

 }

Page 17

StParseLine

 int StParseLine(buffer,ref word,ref WordIndex, ref CurIndex,LineLen)

 string buffer; (input) Pointer to the string containing the words to extract.

 string word; (output) Pointer to the string where the extracted word is to be
copied.

 int WordIndex; (output) Starting position of the extracted word with respect to
the beginning of the buffer.

 int CurIndex; (input/output) The function begins examining the buffer
location as given by this argument. When a word is extracted,
this location is updated to contain the pointer after the end of
the word. Therefore, the next call to the StParseLine routine
will automatically begin the search where the previous call
ended.

 int LineLen; (input) The length of the buffer to examine. The length is
counted from the beginning of the buffer. If the calling routine
inserts or deletes a word in the buffer, it should update this
variable appropriately to reflect the updated length of the
buffer.

 Description: Use this routine to parse a buffer containing words to be spell checked. Each
call returns a word. The extracted word contains a combination of upper/lower case
characters 'a' to 'z' and the apostrophe character. This word is acceptable to the SpellWord
function. Therefore, the main usage of this function is to create words for the SpellWord
function. Your application can call this function repetitively until all words from a buffer are
extracted.

Return: The function returns the length of the extracted word. A zero length indicates the
end of the buffer.

Example:

 strng line="It pays to increase your word power

 (Dr. Funk).";

 string CurWord,replace;

 int LineLen,WordLen=0,CurIndex,WordIndex,ResultCode;

 CurIndex=0; /* initialize the beginning of search */

 LineLen=line.Length;

 SpellTime st = new SpellTime();

 while ((WordLen=st.StParseLine(line, ref CurWord,

 ref WordIndex, ref LineIndex, LineLen))>0) {

Page 18

 if(!st.SpellWord(CurWord,ST_INTERACTIVE|ST_BEEP,NULL,

 out ResultCode){

 MessageBox.Show("Incorrect

Word","",MessageBoxButtons.OK);

 if ((ResultCode&ST_EXIT)>0) return;

 if ((ResultCode&ST_ERROR)>0) return;

 replace=st.GetReplacement();

 if (replace.Length>0) {

 /* insert the new word in the line buffer */

 /* update the LineLen variable */

 }

 }

 else {

 MessageBox.Show("Correct Word","",MessageBoxButtons.OK);

 }

 }

Page 19

StResetUserDict

 int StResetUserDict(new,ref old)

 string new; (input) Pathname of the new user dictionary.

 string old; (output) Pathname of the previous user dictionary.

 Description: This routine closes the current user dictionary and opens the specified new
user dictionary. If the new dictionary parameter is "", the current dictionary remains open.
However, its contents are written out to the disk file. The second argument receives the
pathname of the previous user dictionary. The second argument should point to a string
large enough to hold a complete DOS pathname.

This function serves two purposes. First, it is used to update the user dictionary file with
the contents of the user dictionary buffer. It is accomplished by calling this function with
empty string arguments at the end of the spell checking session. Second, this function can
be used to activate a new user dictionary before initiating a spell checking session. By
default, the 'dict35.u' file is used as the user dictionary. An application that sets a new user
dictionary should activate the previous dictionary at the end of the session. This also
causes the new user dictionary file to be updated.

Return: This function returns a TRUE value to indicate the success, and a FALSE value to
indicate a processing error. The pathname of the previous dictionary is copied to the string
pointed by the second argument.

Example:

 1. update the existing user dictionary file

 st.StResetUserDict("","");

 2. open a new user dictionary

 string old;

 st.StResetUserDict("mydict",out old);

 /* spell checking statements here */

 .

 .

 .

 st.StResetUserDict(old,"");

Page 20

StSetFlags

 int StSetFlags(set, flag)

 bool set; TRUE to set the flag, or FALSE to reset it.

 Dint flag; The flag to set or reset.

The following flags are available currently:

 STFLAG_USE_APOSTROPHE: SpellTime normally treats the apostrophe
character as the possessive case modifier.
Instead, you can set this flag in the beginning
of your program to treat the apostrophe
character as a regular character.

 STFLAG_SPANISH_DLG: Show the word-selection dialog box in Spanish.

 STFLAG_NO_NUM_IN_WORD This flag instructs the StParseLine function to
filter words containing numbers.

 STFLAG_DUTCH_DLG Show the word-selection dialog box in Dutch.

 STFLAG_GERMAN_DLG Show the word-selection dialog box in German.

 STFLAG_FRENCH_DLG Show the word-selection dialog box in French.

 STFLAG_ALL_CAPS_TO_LOWER Convert a capitalized word to lower case for
spell checking. This feature is useful when
using a case-sensitive dictionary.

 Return: This function returns the new value of the flag bits.

Page 21

StSwitchDict

 bool StSwitchDict(DictName)

 string DictName; The new dictionary file name including the '.d' extension, and
any path specification.

Example: mydict35.d

 c:\uk\dict35.d

 Return: This method returns true when successful.

Page 22

ToSpellHist

 bool ToSpellHist(CurWord,flag,ReplaceWord)

 string CurWord; (input) A word that needs to be inserted into the history buffer.

 char flag; (input) The flag that indicates whether the word is (I) ignored
by the user or is (R) replaced by another word.

 string ReplaceWord (input) Pointer to the replacement word when the flag is equal
to 'R'.

 Description: This routine is used to insert a word into the history buffer. All subsequent
occurrences of the given word is automatically ignored or replaced by the DLL. If the word
is being replaced by another word, the replacement word is provided by the last argument.

Both the input word and the replacement word must be provided in lower case.

Return Value: This function returns true when successful.

Page 23

ToUserDict

 int ToUserDict(CurWord)

 string CurWord; (input) A word that needs to be added to the user dictionary
buffer.

 Description: This routine is used to add a word to the user dictionary. The input word must
be provided in lower case.

Also note that your application needs to call the StResetUserDict function at the end of
your program to actually write the updated user dictionary to the disk file.

Return Value: This function returns true when successful.

See Also
StResetUserDict

Page 24

Memory Considerations
 Some SpellTime data objects have a fixed memory requirement, where as other objects

have flexible memory requirements. In this section we will discuss each data component.
Where possible, we will also indicate ways of reducing memory overhead by curtailing
certain functionalities.

Dictionary Index: This component consists of data pointers (4 bytes), data size (4 bytes),
and data location (1 byte). There are 784 (ST_SIZE*ST_SIZE) dictionary indices. Therefore
the total memory requirement is approximately 7 K bytes ((4+4+1)*784). This memory is
allocated in the FAR location.

Small Word Dictionary: At present, SpellTime requires approximately 450 bytes to read
the small word dictionary (dict35.s) into memory.

User Dictionary: The memory requirement for this component is equal to the size of the
user dictionary plus an allowance (ST_BUF_SIZE) for new words. At present the
ST_BUF_SIZE is set to 2 K bytes.

History Buffer: The initial size of the history buffer is equal to 2*ST_BUF_SIZE. The history
buffer can expand during the spell checking session as needed. You can reduce the initial
memory requirement of this component by assigning a smaller value to the ST_BUF_SIZE
global constant.

Main Dictionary Data: The cumulative memory requirement for all objects in the main
dictionary data file is approximately 350 K bytes. However, the memory requirement for this
component is flexible (minimum memory requirement = 0 K bytes). The main dictionary
data is not loaded into the memory during the initialization. The data is read into the
discardable memory buffers as needed during the spell checking session.

Page 25

Interface With TE Edit Control
 TE Edit Control can interface with SpellTime without any coding on your part. Simply move

the SpellTime.dll file to the directory where the tern.dll file is located. Then move all the
dict35.* files to the same directory.

After the editor window is created, set the SpellTime key as following.

Tern.TerSetStLicenseKey(LicenseKey)

Your license key for SpellTime is e-mailed to you after your order for SpellTime is
processed. Please note that your license key for TE Edit Control is not valid when calling
the TerSetStLicenseKey method.

To invoke spell checking from within your program, simply add this statement:

tern.TerCommand(ID_SPELL)

or, set the command property of the control:

tern.command=ID_SPELL

Page 26

Dictionary Update Utilities
 The package comes with 3 DOS based utilities to add new words to the main dictionary.

Follow these steps to add new words to the main dictionary:

1) Run the decomp35.EXE utility to decompress the main dictionary into a number of text
files. The text files are named as D35_A through D35_Z, D35_n, D35_SML. dict35.map.
The D35_A through D35_Z files contain the words starting with an English alphabet. If the
dictionary supports additional characters, those words are written into the files with name
(D35_xxxx) built by concatenating the unicodeI value of the character in the hex format to
the prefix 'D35_'. For Example, the D35_0027 file contains words that start with an
apostrophe character, i.e. 'twill. The D35_SML file is a copy of dict35.s, the small word
dictionary. The words in the text files have compression codes in the form of a period (.)
character.

Note: All text files (d35_*, dict35.map, etc) used by dictionary update utilities are in
Unicode text format. A unicode text file includes a two signature bytes (0xFF and 0xFE) in
the beginning of the files. Thereafter, each 2 byte sequence is treated as one unicode
character. You must use a unicode aware editor (such as Notepad) to view or edit these
files.

The dict35.map contains the character map supported by the dictionary. The file has one
line for each supported character. Each line has two letters separated by a comma. The
first letter denotes the uppercase form of the letter, and the second letter denotes the
lowercase form of the letter. Example: A,a.

Syntax:

decomp35 [/S]

The optional /S switch suppresses the program messages.

2) Run the merge35.EXE utility to merge a list of words contained in a word file to the
D35_* files. The word file must be in the Unicode text format (see note above). The word
file should consist of words delimited by a space, comma, or carriage return/new line
combination. The individual words can contain the characters supported indicated in the
dict35.map file. For example, the standard dictionary supports these characters:

Alphabets 'a' through 'z'

Alphabets 'A' through 'Z'

and an apostrophe character.

The merge utility converts the uppercase characters to the lowercase. A word must not be
greater than 40 characters. The apostrophe characters can be used only as an abbreviator,
and NOT as a possessive specifier. A merge file may not be larger than 32000 bytes. You
can break a large merge file into smaller files and run the merge35 program multiple times.

Examples of valid words in a word file:

cat, dog

cats,dogs

Apple,

Page 27

he'll

Examples of invalid words:

21ST /* numerics not allowed */

cat's /* possessive case not allowed */

apple-growers /* hyphenation not allowed */

The dict35.u file contains the words in the valid format. Thus, these files can be directly
merged into the dictionary text files.

Syntax:

MERGE35 MergeFile [/S]

MergeFile: Name of the word file.

The optional /S switch suppresses the program messages.

Example:

MERGE dict35.u

MERGE dict35.app /S

MERGE YourMergeFile

As an alternative, you can also use a unicode aware text editor such as Notepad to add or
delete words form the D35_A through D35_Z, and D35_xxxx files. This manual method
requires utmost care so as not to disturb the sorting order within the file. The sorting order
is governed by the position of the characters in the dict35.map file. In the standard
dictionary, the text files assume that the apostrophe character has a higher collating
sequence than the letter 'z'. The merge35 utility also inserts the compression codes
appropriately into the new words. If you are manually editing the text files, you will need to
provide these compression codes to match the neighboring words. Because of these
considerations, we encourage the use of the merge35 program instead.

3) Run the comp35.EXE utility to compress the dictionary text files (D35_*) to form the
dict35.d and dict35.s files.

Syntax:

comp35 [/S]

The optional /S switch suppresses the program messages.

Although these 3 steps are required, you do not necessarily have to run the first step every
time. Normally you can delete the D35_* files after the last step. But if you have enough
disk space, you may like to retain them. If the text files are retained, you can skip the first
step the next time.

Page 28

Building a Foreign Language Dictionary
 The dictionary update utility described in the previous chapter can be used to build a

foreign language dictionary. The dictionary update utilities support foreign languages which
are based on a single byte character set. Follow these steps to build a foreign language
dictionary.

1. Build the character map file (dict35.map). The character map file is a unicode text file
which contains the characters supported by the language. To retrieve the default map file,
run the decomp35.exe program. The default map file contains these lines:

A,a

B,b

C,c

D,d

E,e

F,f

G,g

H,h

I,i

J,j

K,k

L,l

M,m

N,n

O,o

P,p

Q,q

R,r

S,s

T,t

U,u

V,v

W,w

Page 29

X,x

Y,y

Z,z

','

If your language uses the English alphabets, then you don't need to modify this file. If you
language uses the English alphabets and also some additional characters, add the
additional characters after the last line in the file. You must use a unicode aware editor
such as Notepad to edit the map file.

If your language uses non-English alphabets, delete the existing lines from this file and add
new lines, one for each character supported by the language. Each line should contain 2
characters separated by a comma. The first character should be the uppercase form for the
letter. The second character should be the lowercase variation for the letter. For some
characters the uppercase and the lowercase form may be identical.

The standard English dictionary map has 27 characters ('a' to 'z', and an apostrophe
character). SpellTime supports up to 62 characters for a language. SpellTime works more
efficiently with dictionaries that have a smaller number of characters in the character set.

2. Once the map file is built, you are ready to merge your list of words by using the
merge35.exe program. This program merges a file containing the list of words into the
decoded dictionary file set. Please refer to the previous chapter for the description of the
merge program.

3. Once all the merge files are merged into the decoded dictionary file set, you can use the
comp35.exe program to build the binary dictionary file.

Page 30

Recompiling the DLL
 Using Make file:

The product includes a make file called make-mc which can be used to recompile the dll.
This make file recomiles the product using the command line compiler. Therefore the
environment variable must be set properly to access the .NET c# compiler from the
command line.

Using Visual Studio:

The product includes the tern.csproj project file which can be loaded into Visual Studio to
recompile this product.

Building a new project:

Please follow these steps to build a new Visual Studio project to recomile the tern dll:

1.Create a new project.

Project Type: Visual c# Project, Templates: Empty Project

Project Name: SpellTime

2.Now right-click on 'SpellTime' at the top of the Solution Explorer window,

Select 'Add Exisisting Items'. Select and add the SpellTime.cs, AssemblyInfo.cs
and spldlg_*.cs files. Select and add all ter*.resources files.

3.Add following references:

System.dll

System.Windows.Forms.dll

System.Drawing.dll

System.data.dll

System.xml.dll

mscorlib.dll

4.Right click on Tern to select the 'Properties' option. Now change these
properties:

General->ObjectType to 'Class Library'

Output File: SpellTime.dll

Default Namespace:

The Default Namespace must be left blank to properly access the program
resources such as icons and bitmap.

Page 31

Dictionary Data Format
 This section describes the data format of the various dictionary components.

An application developer does not need to understand the dictionary format of the main
dictionary. Nonetheless, the data format is described here for those developers who have
time and inclination to dwell into the complexity of this subject matter.

Main Dictionary

The main dictionary consist of three files: dict35.d, dict35.i and dict35.S. The dict35.s file
contains small words that consist of one or two letters. The words in this file are stored in
lowercase and are delimited by a comma.

The dict35.d file contains the words that have more than 2 characters. This file is divided
into various word buckets. Each word bucket contains words that have a common first two
letters. For example, words that start with 'ab' are stored in one bucket, and the words that
start with 'ac' are stored in another bucket. The dict35.I file contains the pointer to each
word bucket. The dict35.i file also contains the size of each word bucket.

The words in a word bucket are arranged in the alphabetic order. Further, the words are
stored in a compressed format. To understand the compression scheme employed in the
dictionary, consider these 3 words:

 cerebra

 cerebral

 cerebrally

These words clearly have common string components. The dictionary will store these
words in a series as following:

 cere bra l lly

Obviously, this series must be stored in such a fashion so that three individual words can
be extracted during the spell checking session. The series has four components. The first
word can be reconstructed by combining the first and the second component. The second
string can be reconstructed by combining the first, second and the third component. The
third word can be reconstructed by combining the first, second and the fourth component.
Therefore, it is necessary to delimit these components in the dictionary.

The process of delimiting the components is facilitated by a concept of levels. A level
determines the hierarchy of a component in its parent words. In the example above, the
individual components will be assigned the following levels:

 cere 0

 bra 1

 l 2

 lly 2

Normally the alphabetic characters are mapped to ASCII 1 to 26. The apostrophe character
is mapped to ASCII 27. Therefore, all characters in level zero ("cere") will be mapped to the
values between 1 and 26. The first character of the second level ("bra") will be raised to

Page 32

level one by adding ST_SIZE to its level zero value. The second character of the second
level will be at level zero. The last character of the second level will be raised to the highest
level (ST_MAX_LEVELS). The ST_MAX_LEVELS indicates an end of the word. With the
information provided in this paragraph, you can reconstruct the first word.

To reconstruct the second word, look at the third component ("l"). This component has only
one character. This character is raised to the second level. Because there are no additional
characters, an additional character (ST_END_OF_int) is appended which marks the end of
this word.

To reconstruct the third word, notice that the fourth component is also raised to the second
level. By applying the logic of the preceding two paragraphs, the third word can be
constructed by combining the first, second, and the fourth component.

The end-of-series is indicated by appending the ST_NEW_STREAM character.

User Dictionary

The user dictionary is automatically updated by the SpellTime routines. All words are
stored in lowercase with the first character capitalized. Each word is delimited by the
comma character.

Page 33

	General Overview
	Technical Overview
	Getting Started
	SpellTime Files
	License Key
	SpellTime into Your Application

	Control Methods
	SpellDict
	SpellWord
	SpellString
	StGetAlternateWord
	StGetReplacement
	StAddVowel
	StClearHist
	StParseLine
	StResetUserDict
	StSetFlags
	StSwitchDict
	ToSpellHist
	ToUserDict

	Memory Considerations
	Interface With TE Edit Control
	Dictionary Update Utilities
	Building a Foreign Language Dictionary
	Recompiling the DLL
	Dictionary Data Format

